Form Approved
CMEB to. 0704-0188

REPCORT DOCUMENTATION PAGE .

ronuraer for thu rpheston ot nds
irtaining the gata neege
TATION, inCuding suoges ons n3 {s
Davis H‘Gf‘wéy Su te 1204, Arhington, v& ?”‘2-43!2(a'c 'C the O‘ﬁ e of r» ana

NS, $ERTCNIRG @xSUNG Cata souries
or any siher aspect of this
d Reports, 1215 Jetferson
n, OC 20503

buplic repet

ers Sery xc"s ul e”ora!e (1
ng Buuﬂ"' Paoerwo k Reductior Pr o;ec! (C704- C 8%, \hasv

3. REPORT TYPE AND DATES COVERED
FINAL 01 JUL 94 TO 31 DEC 95

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DISTRIBUTED OPTIMIZATION FOR CUSTOMIZED AIRCRAFT FLEET

SCHEDULING
F49620-24-1-0411

6. AUTHOR(S)

KENDALL E. NYGARD 3484/BS

61103D

8. PERFORMING ORGANIZATION
REPORT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NORTH DAKOTA STATE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE AND IPERATIONS RESEARACH
FARGO, ND 58105-5164

10. SPONSORING / MIOKITORING
ACENCY REPCRT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFOSR/NM
1110 DUNCAN AVE , SUITE Bl15
BOLLING AFB, DC 20332-8080 !

-

I YT
% SUPPLINAIRNTELAY KT

—

Za. DISTRI

é APPROVED FOR PUBLIC RELEASE:
! DISTRIBUTION UNLIMITIED

]

l

| f
I 13, ABSTRACT iMaximum 200 words)

A COMPLETE SOFTWARE SYSTEM FOR MILITARY PASSENGER AIRCRAFT SCHEDULING WAS DESIGNED
AND BUILT.

19960726 084

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION
OF REPORT H OF THIS PAGE . OF ABSTRACT .
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED _SAR
NSN 7540-01-280-5500 . i Standard Form 298 (Rev. 2-89)
mc QUAIIITY INSPEGTED 1 grgessc.lrolged by ANSI Std. Z39-18

T S T P T Y T T

Distributed Optimization for Customized Aircraft Fleet Scheduling

Interim Technical Report

July 31, 1995
Submitted to:
Air Force Office of Scientific Research
by
North Dakota State University

Grant F49620-94-1-0411

Kendall E. Nygard
Department of Computer Science and Operations Research
North Dakota State University
Fargo, ND 58105-5164

TABLE OF CONTENTS

TABLE OF CONTENTS 1
1. INTRODUCTION 4
1.1 FOCUS OF THE RESEARCH......cccvrurmeminiiimiuitiiisssscsisnesssessestess s san s st e s sesssssassnsne e ssasassansasensnsasasesssseses 4
1.2 NEED FOR THE GRAPHICAL USER INTERFACE (GUI)covuivererieeieeriieseesnesssssssnssissssesansesecasssssscsssns 5
1.3 DEVELOPMENT ENVIRONMENT SPECIFICATIONScvcverterereerenerseessnisiresissessanessesssessesssssssessessssassesssnsens 5
1.3.1 Hardware REQUIFEMENLSc.cveeevereeereneeierreeeceiissieiissssss st ssssssasssb s en b enes 6

1.3.2 SOftWAre REGUITEMENLS..............cooeueviiicniniiiisesisenis st b s b 6

1.3.3 Functional ReqUIFEMENLSccccouuiuiiiriiueriaieeiesesisi e ms b sas s s s e seseas 6

1.4 ORGANIZATIONcereeeeierureneneesersasraoreeerassesiesssssessetsrereestnisssisssssteriessarstssantasssresesssmsssssrsressssaressssssssssensas 8

2. BACKGROUND AND NATURE OF THE PROBLEM 9
2.1 DEFINITION OF THE PROBLEMuuuviiiiremiiiieiticessitessssnsisasessssssssssssessasassessasssssssssssassssnasssassasessassenesses 9
20T CHEALS ..ot s e sttt b bbb b s b et am e sa st e s b s e b bn et s 9

2.1.2 Nture of the REQUESTSc.covueuemimieneiiieciceciiiiiete e sttt 9

2.1.3 RESOUFCES ...oevneveeeeeereeeisieriree et st asas e st ba s bbb bbb as e s s b b e s b e s s s aa st eaes 9
2.1.4 Crew Managementccuimmnnicinennseesss st ss st sttt st 10

205 SCHOAUIBES ...ttt sttt ettt s he e e s e ae e 10
2016 OBJECLIVE ...t bR 11

2.2 SYSTEM OVERVIEWuciiierreererateresseeesierassessasessssssesssssosssstsssesesssiosssssssssssssassesstosnsssesssasssssssssensrsrsasssacts 11
2.2.1 SCPEEI INIEITACE ...ttt e b aes e en s s s s 12

2.2.2 Sample Manual SCRE@UITNG. ...t s 13

2.3 JUSTIFYING NEED FOR A GUI ENVIRONMENTcccoivimnimiiminnitissrnissssesissinsesssnassssstssssssssassassasasnsassssses 20
2.4 CONTEXT RELATIVE TO LITERATUREcticitreeeriareesatseeissinisresssisssnsssanesssssssssassasasssssanssssessseassnsasssansss 20
2.:4.1 X WIRAOW SYSIEISoeeeieeieeeiececeeneeiri st seeene s ss st a s s et ss st 20

242 DECVUIT ..ottt sttt ettt s ess s s s bbb s sttt et 23

2. 4.3 XPM « X PIXMEP......ocooooiivieiiieiee ettt et sasas s a s s sa s s st an s st anasesene 23

3. USER INTERFACE DESIGN ISSUES 24
3.1 USER ORIENTATION......ceieceresuersiueteereneneresiaessaeassonssssastsossesssssesessasassassssssesesssasssssssssssssessasasnssesnsesasnen 24
3.1.1 Direct Manipulation (DM)............c.coiocevieceevinieniieneniesiranneseessasses e sse s ansessessssssessssssessesssnsns 25
3.1.2 CONSISTENCY ...evenvienereeaenieeeieeeeenraeeteaste e et e st e antaenseabassetassta s et esteaessassssssstessbassseenneesbeesssentesesssentessans 25

3. L3 CLQFILY ettt ettt etk b bttt ae et a et e s et e sennennan 25
314 GPOUPINGS ...ttt et r ettt et sttt sttt s as e ettt se et e et e s 26

3 L5 FEABACK. ..ottt ettt et ettt bbbt bbb s 26
3.1.6 COMPALIDILILY ..ottt ettt sttt etttk sttt et st e e e e enaan 26

3. 1.7 FIEXIDILILY ...ttt ettt st et 26

3. 1.8 USQBITILY ..ottt ettt ettt sttt et b e ene et h e st ae sae ettt ns e b e be e nbas 27
30110 COOF .t et et ettt a et ettt ebenatan 28
LTI FOCUS ..ottt ettt ettt ettt bbb ettt st ettt be s 29
30112 MOGES ..ottt et et et sr et en 30

4. SYSTEM OPERATIONS AND FUNCTIONS 31
4. 1.1 RequeSt HEAURE ..ottt ettt et se st et e e e 31
4.1.2 Request Passenger Details.................ccoooivuiieicennrcccecen et eesce e necee s cenesneee 32
4.1.3 ReQUESt LG DIAILScooveereiiierineecireieeeceereeee sttt ettt sacrt et sttt s seen 33
4.1.4 REGUESE REIMATEKS ...ttt ettt et se st sttt st se e ens e 35
4.2 DEFINING AND SOLVING THE PROBLEM.......cciitieiiiniiectinieessessnessesssesessessssesssesessassssssesssassssasssesssesasaen 35
4.2.1 Overview of the SCheduling SCPEEN...........cvveuieiieiiieiteee ettt rese s senens 36
4.2.2 Defining @ PPOBIEM............ccoooveeeiiiiiiiiiecetece e eccees e et e 37
4.2.3 Manual SCREAUIINGcc.ocovuveeiriiiieeeite ettt sttt st b st et sa s e e saesensseans 40
4.2.4 Automated SCREAUIINGcccconuiieirieciereierieeie ettt e et sse st sn s sa st sa e st snsesenens 47
4.2.5 Combination of Manual and Automatic SCheduling................ccoucoevveeennicnceneeresiesieseeeesennas 48

5. SOFTWARE SYSTEM DESIGN

5.1 DAKOTA DESIGNccoomviiirinciniiiinieicncsiesesnsnesnsenns
5.1.1 Presentation Layer...........cccccvvveeccovcicnnnnnen.
5.1.2 Presentation LOgic............ccccccvevvvnnirunveeennn.
5.1.3 DAtQ LOGIC ...
5.1.4 File Interface..............cccccoovcvivnnvccennnnsucanennnnns
5.2.1 Advantages and Disadvantages........................
5.2.2 FEQIUFESououeeeeenevtcriieneses e
5.2.3 Help System Designcciovcnnevennnnas

5.3 UIL2C DESIGN.....ccoevemmririmreserisnssesnsisnsesnsassessssenns

5.4 INTEGRATION OF SUB-SYSTEMScccoverinvnniinsenennens

6. EFFECTIVENESS OF THE GUI

..

6.1 CANDIDATE SOLUTION SCREEN - CELLULAR GRAPH

7. CONCLUSIONS

REFERENCES

APPENDIX A-MASTER DATA ENTRY SCREENS

APPENDIX B-SCHEDULING FILE FORMAT

49

49

49

50

50

52

52

53

54

60

61

63

66

69

70

71

78

82

APPENDIX C-HYPERHELP SAMPLE FILES

87

APPENDIX D-UIL TO C SAMPLE FILES

1. INTRODUCTION

DAKOTA is a software environment for aircraft scheduling. Important features of the system
include an extended set partitioning algorithm for optimizing schedules, a geographic-based
display subsystem, schedule editing tools, context-sensitive hyperhelp, and report writing
facilities. The goal is to provide a system that can help users quickly produce aircraft
schedules that efficiently utilize the available fleet. The manual schedule editing procedures
and the optimizer work seamlessly, making the best of both approaches available to the
scheduler. Designed from the perspective of the end user, DAKOTA is a comprehensive flight
scheduling system that is easy to use, and easy to master.

Designing and implementing high-quality graphical human-computer interfaces is a
challenging process. In this report, some of the user interface design choices are presented
and analyzed. The fundamental problem addressed is the need to arrange customized air
travel military personnel (clients) who submit travel requests composed of one or more
origin-destination pairs called request legs. Along with the request, there are constraints,
expressed in terms of the time when the client wishes to arrive at the destination, the time
when the client wants to leave from the origin, and the type of aircraft on which he/she
wishes. In addition, there are constraints from the operational point of view, which involve
aircraft capacity, flight endurance, continuous crew duty duration, and permission to fly
over a country's airspace. Given a specific problem, DAKOTA provides a robust interface for
the scheduler to employ in interacting with the underlying databases of available airports
and other information [6], and the resource allocation tools. This report describes the
operational use and design of DAKOTA, and explains the software engineering choices that
were made. Details of the extended set partitioning optimization model, the underlying
database engine and Structured Query Language (SQL) extensions, and the tutorial and user
manual materials are provided in other reports on the DAKOTA system.

1.1 Focus of the Research

A prominent thrust of the research concerns the user-centered design of the software tools.. A
truly user-friendly tool is one that requires the user to learn only a few new concepts and
easy-to-remember and meaningful keywords in order to get started. The tool should be
powerful, allowing the user to solve complex problems by providing assistance in multiple
ways, including graphically and statistically, and by providing a way to compare candidate
solutions to choose the best one. The greatest promise of a functionality-rich scheduling
system is offering new and powerful methods of solving problems. Without adequate system
support, the chances of a user finding an optimum solution for a given problem are small.
Section 6, discusses the features in the MAP, SCHEDULE and CANDIDATE SOLUTION
screens and how the features help in solving scheduling problems. User friendliness also
encompasses generating reports in the form of tables, geographic maps, and graphical charts
obtained within minutes.
(¢}

There are two ways to schedule a request; the first is by human schedulers and the second is
using the schedule optimizer. The terms scheduler and user in this report refer to human
schedulers, unless explicitly described as the automatic scheduler, which refers to the
optimization algorithm for scheduling. There are many flexibilities and advantages to
providing both manual and automatic scheduling and allowing them work together. For
exammple, using automatic scheduler, one could schedule requests and later adjust and tune
the schedule using the manual scheduling tools.

Meaningful and helpful error messages contribute to wuser friendliness, as does a high

4

quality on-line hypertext help. In some applications, it may be possible to produce computer
programs that are so well designed and tested that no user assistance is ever needed. This is
seldom achieved in practice because the human ability to understand and predict possible
events and outcomes is limited. Help features provide insurance against less-than-perfect
design [20]. With a hypertext based help system, the help system author creates the
document to fit the information, instead of forcing information into an arbitrary structure. In
an off-line document, the document reader must go to a different page or book whenever
encountering such things as cross-references, bibliographic citations, glossary terms, and
footnotes. In hypertext, by clicking on the hot-spot, the reader can go to a different topic
temporarily and return back to the original topic. Hypertext models associative thinking,
which closely resembles human idea processing, by creating a network of nodes and links,
allowing for three-dimensional navigation through a body of information. Therefore,
hypertext tends to easy to learn, understand, and remember.

We also describe the use of higher level software tools in the development of DAKOTA. One
such tool is a User Interface Management System (UIMS) called DEC-VUIT. It enables the
screen designer to quickly prototype screens. When the screens are to be integrated with
other components of the scheduling system, they must be converted to C and embedded
within native C source code for the other portions of the system. To accomplish this task, we
developed a compiler that parses and generates C source code from the user interface
specification language created from DEC-VUIT.

Finally, there was a significant effort to integrate the various sub-systems of the aircraft
scheduling software environment. There are many components: the manual scheduling, user
interface, database, database interface, help system, UIL2C compiler and optimizer. Each of
these components is made up of many sub-components. The approach was to support parallel
development of these sub-components, then couple them together. This report describes the
manual scheduling, user interface, help system, UIL2C compiler and how other sub-
components are invoked in addressing the aircraft scheduling problem.

1.2 Need For the Graphical User Interface (GUI)

There are many computer applications which prototype the work flow of a domain. The
success of such systems depends on how accurately and effectively those computer
applications represent the domain [1]. Many are not successful in achieving the goal of
effectively serving the end-user.

The design of DAKOTA is driven by the end-user. It is built with features that the domain
user, in this case human schedulers, need in the scheduling process. For example, the map
screen displays a map of the world, with the scheduled mission and unscheduled travel
requests explicitly presented. This screen helps in visualizing the problem and increases the
productivity of the scheduler. The interactive computer graphics presented are designed to
permit an individual with little or no training in scheduling to develop a good schedule in a
short period of time. The interactive graphics package provides a bridge between the problem
environment and the models and data.

1.3 Development Environment Specifications

This section lists the hardware, software, and functional requirements of the DAKOTA.
Hardware specifications, provides the application systems hardware platform requirement.

5

Software specifications, identifies the programming environment and tools required to
develop the application system. The functional requirements are the specifications of the
final system, which provide the guidelines during the design and development phases.

1.3.1 Hardware Requirements
The hardware requirements for DAKOTA are as follows:
e Provide the ability to handle a client-server configuration

e Provide the ability for more than one scheduler to work with the application system (i.e.,
multi-user support)

e Display multiple windows on the display device

1.3.2 Software Requirements
The DAKOTA software requirements are as follows:

e Support multiple picture formats, including X PixMap, .and gif, and provide tools to
create and edit pictures

e Provide libraries for handling multiple types of display objects, including menus,
pushbuttons, drawing areas, text fields, and scroll bars.

e Provide facilities for dynamically cha;lging the display attribute of the display objects.

1.3.3 Functional Requirements

There are various functional requirements of the target system, delineated in the following
paragraphs.

Graphical User Interface:

e Provide efficient data entry and retrieval screens which involve the use of graphical user
interfaces

o Provide the ability to run multiple computer sessions simultaneously (e.g., a scheduler
being able to view request details when scheduling)

e Provide efficient and intuitive navigation between screens for both sophisticated and
unsophisticated users

e Provide the flexibility to incorporate a variety of data input methods (i.e., keyboard,
mouse, etc.)

Map Display: The system should display a map, enabling the visualization of scheduled
mission paths. The user should be able to perform zooming and scrolling operations on this
window and should be able to selectively hide and view information in the map.

Saving and Loading of Schedules: Scheduling is a complex paradigm, and complexity
increases with the number of requests, aircrafts and constraints imposed by the requests
from clients. A typical mission scheduling could be a time-consuming job, taking a major part
of a human scheduler’s time and effort. The system should provide schedulers a way to save
their work to a permanent storage and continue later by retrieving from the repository.

Report Generation: The user should be able to take a hard copy of the generated schedules
in the form of a professional report. As postscript printing is becoming an industry standard,
DAKOTA should be able to generate postscript output.

Customization: The user should be able to choose the shape and color of various objects,
depending on likes and needs. The user should be able to give default values for objects and
be able to store them in the repository. Once the screen comes up later, the system should be
able to remember and use the setting given by the user in the past.

On-line Help: On-line help should be designed with a novice user in mind. On-line help
should be consistent with the hard copy user manual. Many different types of navigation
facilities should be available to the user to facilitate finding a topic of interest with ease and

in the shortest time.

Extendibility: The system should be extendible so that other automated scheduling systems
could be replaced or made to work in a cooperative manner within DAKOTA. Sufficient
modularity should be designed into the system so that later it could be made to work with
other Relational Database Management Systems(RDBMS).

Considering the system requirements we have decided on developing DAKOTA in a DEC
hardware, running a variant of the UNIX operating system called Ultrix V4.3. X Window
system is the development of a GUI environment for the whole system. This system satisfies
all the software and functional requirements mentioned above.

1.4 Organization

This report presents the DAKOTA system from the user interface and software design
perspectives. The organization and content of subsequent sections are described in this
section. This report contains seven sections and four appendices.

Section 1 describes the purpose of the DAKOTA system, the associated design
considerations, and the graphical user interface for scheduling. This section also presents
the focal point of this work and system requirements in terms of hardware and software.

Section 2 introduces the nature and definition of the problem, architecture of the
application system, and context related to the literature. Since the main thrust is given
to the user interface design, this section builds a foundation for the next section which
provides analyses of the user interface issues in detail.

Section 3 explains the user interface issues which influenced the design of DAKOTA.
This section lists the characteristics of importance in designing the human computer
interface. Subsections include a detailed description of each of those characteristics and
present example screens showing how they are adapted in DAKOTA.

Section 4 describes manual scheduling with real-world examples and screens to provide
an intuitive method of scheduling in the manual mode. This section also discusses how
automated and manual scheduling work cooperatively, thereby taking advantage of the
best of both worlds.

Section 5 presents the overall design of the system. The design process uses software
engineering concepts in the design and development of DAKOTA and its sub-systems.
This section contains entity-relationship diagrams (ERD) and data-flow diagrams (DFD)
which describe the data modeling and process modeling. This section also covers
validation and data integrity checks for on the user data before populating the database.

Section 6 explains some of the algorithms used in manipulating graphical items such as
zooming of a world map, viewing and comparing solutions generated either manually or
automatically, and helping choose the best solution possible.

Section 7 concludes the report by summarizing user interface issues and design
recommendations and how they are adapted in DAKOTA. It also lists the enhancements
in terms of features and functionalities that could be added to DAKOTA.

Appendix A discusses master data management in detail. It also shows data entry
screens used for querying and manipulating airport atlas records, passenger details, and
aircraft records.

Appendix B contains a data file format, sample data, and a screen interface for saving
and loading schedules in permanent storage.

Appendix C presents a user manual for the hypertext help system. It also includes
sample hyper-help screens, an input data file format, and the data model schema.

Appendix D presents a user manual for the UIL to C compiler. It also includes a sample
input data file format and sample output file.

2. BACKGROUND AND NATURE OF THE PROBLEM

Studying actual work activity leads to an understanding of how the participants accomplish
their tasks. Based on that understanding, design implications for tools to support domain
user activity are identified and embodied into prototype tools [3]. In Section 2.1 we describe
the activities that influence the scheduling problem at USAFE. An overview of the system,
developed to solve user needs, is given in Section 2.2. Section 2.3 consists of descriptions of
tools that directly and indirectly assisted in the development of DAKOTA.

2.1 Definition of the Problem

The definition of the executive scheduling process is driven by five main entities. They are
the human schedulers, clients, flying requests, resources, and crews. These entity
characteristics and constraints define the scheduling paradigm.

2.1.1 Clients

Clients are both the originators of the data flow and the beneficiaries of the output from the
system. They originate the data by filing a request to fly from one place to another. The
system analyzes the data and schedules a request for a flight. The flight squadron executes
the schedule produced from the software system.

2.1.2 Nature of the Requests

Requests originate from clients, and each of those requests has different characteristics and
constraints. A typical request consists of a sequence of origin and destination locations with
start and end times of the trip. Each of these request origin/destination pairs is called a
request leg. Every request leg has associated time window information, called the departure
time and arrival time window. This time window provides room for human schedulers and
automated scheduling algorithms to execute and produce an optimized schedule. A time
window can be designated as soft or hard, depending on whether it can or cannot be violated.

A request is originated by a member in a group or a single person who wishes to fly from one
place to another. The contingent size may vary, and an individual may join or leave the
group between two request legs. In addition, a request can have additional constraints
concerning such things as the need for a specific aircraft, allowance of combining of requests.
etc. Cancellation of the request can also occur; therefore, the system provides ways for
unscheduling request(s) that have been previously scheduled. There could also be unforeseen
request constraints; thus, a means for recording the constraints must be provided.
Schedulers refer to these comments or remarks while scheduling that request.

2.1.3 Resources

The resource in this scheduling environment refers to aircraft. There are 20 aircraft in the
fleet falling into seven different aircraft types. Each type has its own specifications; they are
the air speed, capacity, endurance (continuous time in flight without refueling), maintenance
schedule, and the budgeted flight time per year. Typical air speed of the flight in the fleet is
between 100 to 500 knots, capacity is from 5 to 20 seats with few of upto 50, and

9

endurance of the flight is between 2.5 to 10 hours.

The system provides ways to add new aircraft types and modify specifications of existing
aircraft types. It also provides ways to add and remove individual aircraft to an aircraft type.
A 5-digit number, called tail number, uniquely identifies an aircraft. The tail number is not
sharable, once assigned to a mission. The system should not let a tail number be scheduled
for the time window it is already scheduled to a mission.

2.1.4 Crew Management

The crew or pilot executes a schedule. Actual assigning of crews to a mission is handled by
the flight squadron; it is not presently supported by the DAKOTA system. De-coupling crew
assignments and mission scheduling provides maximum flexibility for assigning any
available crew eligible to fly the aircraft at the time of the mission. Also while scheduling,
there is no need to be constrained by the availability of any particular crew. However, crew
duty day, a crew-related constraint, affects the scheduling process. A mission should not
exceed a crew duty day, which is 16 hours including 2 hours pre-flight. A crew duty day is the
time when a pilot reports for duty until he or she completes the mission. Hence, flights over
14 hours should include a crew rest period of 15 hours. This procedure applies to most of the
aircraft types in the fleet. The system captures these violations during scheduling and
reports them to schedulers.

2.1.5 Schedulers

Scheduling involves assigning an aircraft or resource to a request. This process has to
consider all the constraints imposed by the clients, requests, resources, and crews. The
output from this process is a set of mission(s) with mission legs (origin/destination pair). It
can be done either manually by human schedulers, automatically by the automated
optimizer, or with a combination of both human schedulers and the optimizer.

Mission scheduling can be a prolonged process. Therefore, mechanisms need to be built into
the system to save the current work and load it later to continue from where it was left. Also,
changes to a scheduled mission can happen up to the last minute, just before it is executed by
the flight squadron. The system provides ways to change any mission-related information.
DAKOTA provides mechanisms to generate more than one solution for a given problem and
to compare and contrast solutions statistically and graphically.

10

2.1.6 Objective

The objective of the operation is to service clients to their satisfaction with optimal usage of
resources. This goal implies that the routes of the aircraft missions must be efficient,
minimize aircraft travel time, and that the selection and sequencing of requests supported by
a mission facilitate high aircraft utilization. Given this objective. the next section provides an
outline of DAKOTA as it was developed to meet system requirements.

2.2 System Overview

The scheduling software system has four main components; the presentation layer, the
database layer, the help sub-system and the algorithmic layer for automatic scheduling.
Figure 2.1 depicts the architectural overview of the software system. There are several
screens to manipulate data in the scheduling paradigm. A database [6] is used to maintain
data that are referred in the scheduling process. Interaction with the database takes place
using an API (Application Program Interface) provided by the database. To perform manual
scheduling the presentation and database layer are employed. The automatic scheduler is a
high-level layer above the presentation layer, and is a loosely coupled module. The
presentation layer invokes the automatic scheduler at the request of the user. All required
data by the automatic scheduler goes from the database through the presentation layer. The
on-line hyper text help system is a support module for this scheduling software system. It
provides the end-user of the application with on-line information of how to use the software
system. With this background on the scheduling software system, the subsequent paragraphs
give an overview of the features and function of the DAKOTA from the end-user's

perspective.

USER SCHEDULING AUTOMATIC
INTERFACE r APPLICATION Ji———SCHEDULER
HELP SYSTEM “|DATABASE “l DISK

Figure 2.1 Architectural overview of DAKOTA.

The software has a screen interface to support all of the steps involved in mission scheduling.
It has screens to manage master data, which includes an airport atlas and passenger and
resource/aircraft information. The actual scheduling process starts when entering client
request information, using the request screen interface. This request is scheduled into a
mission in the scheduling screen. A map screen (see Figure 6.1) is used to view scheduled
routes and unscheduled requests. In addition, there are several viewing mechanisms built
into the system to enable visualization of the problem and produce efficient schedules. This
section will briefly describe the screen interfaces in DAKOTA. It also describes how the
application is layered and integrates components such as the automated scheduler, Hyper-
Help context sensitive on-line help. It also describes how the UIL2C - UIL to C

11

converter is used with DEC-VUIT for rapid screen interface prototyping.

2.2.1 Screen Interface

There are eight screens in the DAKOTA system:
o Main Window

e Airport Atlas Information

e Passenger Information

e Aircraft or Resource Information

¢ Request Data Entry

e Scheduling Screen

e Map Screen

e Candidate Solution Viewing Screen

Main Window: This is the first screen that appears to the user. Other screens in DAKOTA
may be accessed from this screen by pressing the appropriate button from the menu bar. The
main window also displays the logo of the end-user of the system. There are three master
data entry screens: airport atlas, passenger, and aircraft. These screens provide the facility to
add a new record, modify or remove an existing record from the database. These are lookup
data, referenced during mission scheduling and request data entry.

Airport Atlas: This data entry screen is used to capture all details pertaining to an airport. It
includes name of the airport, city where it is located, latitude, longitude and, a four-letter
identification code called ICAOQ. This code is used universally to refer to an airport. DAKOTA
uses this code in the scheduling screen; request data entry, and in map screens whenever
there is a reference to an airport. This screen has facilities to add a new airport to the
database, modify already existing airport information, and delete an existing airport record
from the database.

Passenger Information: This data entry screen is used to manage information about persons
who have already flown a mission or who are likely to fly a mission. Records in this database
keep growing. At some point passengers who are not likely to fly any more missions in the
future need to be identified and removed.

Aircraft or Resource Information: This data entry screen is used to manage a heterogeneous
fleet of aircraft information. There are five total different kinds of information recorded: type
of aircraft, air speed, capacity, endurance, and flying hours. There also could be more than
one aircraft of a specific type, identified by a tail number. A separate screen is used to
capture all the different aircraft and tail numbers within a aircraft type.

Request Data Entry: This screen is used to input requests for travel and screen is arranged
into four sections. The first section is used to enter general information about the

12

request. Passenger information is entered in the second section, request legs, or a
departure/arrival pair, are entered in the third section. Finally, the fourth section is used to
enter general remarks and notes about the airlift request that can be used by the schedulers.

Scheduling Screen: Schedulers use this screen to schedule missions. In a scheduling session
one or more mission(s) from one or more request(s) could be scheduled. Basically, there are
two parts to a scheduling window. The upper half of the screen displays a mission(s) that
participates in a scheduling session, while the lower half of the screen displays all the
requests that take part in that scheduling session. This screen is mainly used for manual
scheduling, but it also has a provision to invoke the automatic scheduler. Both of these
methods can be mixed and matched to reach an optimized schedule. There are facilities to
save and load a scheduling session to and from permanent storage. A detailed description of
the scheduling process is provided in Section 4.

Map screen: This screen enables schedulers to graphically visualize missions and requests on
a particular date. The map screen is divided into four separate panes. The upper left pane
contains a map of the world with lines corresponding to mission legs and request legs.
Missions and requests are color coded to differentiate one from the other. Zoom facilities are
available to the user, which enables the scheduler to zoom on a particular area in a map to
get a clearly focused view of the area of interest. The upper right pane displays all the
unscheduled requests, while the lower right pane displays scheduled missions on a selected
date. The lower left pane displays aircraft type flying hour data. This gives an idea of how
much of an aircraft type’s flying hours are used, as opposed to the budgeted allocation.

Candidate Solution Viewing Screen: This screen looks similar to the map screen, but it
displays missions and requests of a scheduling session, as opposed to displaying a day’s fleet
activity. It also displays activity of aircraft in a scheduling session in the form of a cellular
graph. It helps compare two or more schedule sessions and choose the best available solution
for a given problem.

There are two main reports generated from this software. First, the mission report, contains
the itinerary, passenger list, and revision history for a mission. Second, the daily reports,
contain a day’s schedule. This includes name of the leading passenger in every contingent,
itinerary of all missions on a given day, and the aircraft type and tail number.

2.2.2 Sample Manual Scheduling

In this section we explain the scheduling process with a sample problem. The example
demonstrates how the user can schedule these requests into missions with efficient use of
aircraft and comply with the clients request constraints. Following is a list of requests
populated into the database using the request data entry screen:

13

Reqg:5

Req:6

LYBT
\ Req:7
Lic
“GMML
Figure 2.2 Requests as seen in map screen.
Req Origin Pickup Time Destination Pickup Time PAX
Id ICAO Date Early Late ICAO Date Early Late #
3 GMML 5/Apr/95 0400 0600 EDAR 5/Apr/9s 1100 [1200] 2
EGTE 5/Apr/95 0900 1030 EDAR 5/Apr/95 1100 [1200] 2
4 EGTE 5/Apr/95 0250 0500 EGNB 5/Apr/95 0700 [1000] 2
5 EDAR 5/Apr/95 [0650] 1230 EHVB 5/Apr/95 1200 [1300] 3
EHVB 5/Apr/95 [11501 1730 EHVB 5/Apr/95 1700 [1800] 3

14

6 LYBT 5/Apr/95 0835 1050 EPWA 5/Apr/95 1030 1230 2

EPWA 5/Apr/95 1130 1330 ENKR 5/Apr/95 1400 [1700] 2

7 LICD 5/Apr/95 0630 0820 LYBT 5/Apr/95 0800 0930 2

8 EDBT 5/Apr/95 0920 1040 EPWA 5/Apr/95 1005 1230 2

EPWA 5/Apr/95 1200 1330 EDAR 5/Apr/95 1330 [1430] 2

9 EKTS 5/Apr/95 1850 2150 EDAR 5/Apr/95 2200 [2300] 3

10 EDBT 5/Apr/95 0450 1145 EPWA 5/Apr/95 1030 1230 3

EPWA 5/Apr/95 1200 1415 EPWA 5/Apr/95 1400 1700 3

Table 2.1 Sample requests used to demonstrate manual scheduling.

Dates are given in day/month/year format; times are railway time; *[°
and ‘]’ surrounding a time indicate hard time bound.

Even though we have eight different requests, some legs overlap. If it happens that the time
windows are flexible enough (i.e soft time), we can schedule those eight requests in missions
fewer than eight. Following are the steps in solving a scheduling problem:

15

3 18 - POC , GMML EDAR
3 7 - POC B EGTE EDAR
4 8 - POC , EGTE EGNB
5 9 - POC , EDAR EHVB
5 10 - POC ’, EHVB EDAR
6 16 - POC , LYBT EPWA
6 19 - POC , EPWR ENKR
7 17 - POC P LICD LYBT
8 13 - POC , EDBT EPWA
8 20 - POC , EPWA EDAR
9 14 - POC P EKTS EDAR
10 15 - POC P EDBT EPWA
10 21 - POC P EPWA ENKR g

Figure 2.4 Mission Creation dialog box.

16

The first step in problem solving is to define the problem. This is done by selecting
unscheduled request(s) in the request selection dialog box. Clicking DEFINITION-
>SELECT REQUEST from the pulldown menu in'the scheduling screen will pop up the
request selection dialog box. A sample request selection dialog box is in Figure 2.3, showing
selected unscheduled requests legs which are on the list from Table 2.1.

The second step in scheduling is to create missions or, in other words, block aircraft/resource
time for scheduling. Selecting DEFINITION->SELECT_MISSION from the pulldown menu
in the scheduling screen will pop up the mission creation dialog box. Figure 2.4 shows a
mission that is created. After entering all text fields, pressing OK will create the mission
with a negative identifier. As more missions the system will automatically assign an ID
below 0 in descending order. A positive mission identifier is assigned to a mission when the
user chooses to save to database. This type of mission number assignment is done to make
sure there is no gap in the mission sequence number.

The third step in the scheduling process is to create mission legs such that more requests can
be accommodated in fewer missions possible without violating request, aircraft and crew
constraints (as mentioned in Section 2.1). Mission legs can be created by following steps
given in Section 4. Looking at the unscheduled request legs, the user can accommodate in
four missions. A list of mission legs created is shown on Table 2.2.

The fourth step in the scheduling process is to associate unscheduled request legs to
missions. First, click on the SCHEDULE button in the request work area, and then select an
unscheduled request leg to be scheduled. The system will highlight mission leg(s) that can
accommodate selected unscheduled request legs. There could be more than one combination
of mission leg(s) that could fly a request leg. The NEXT and PREV button will show
successive combinations of mission leg(s) that could fly a request leg. Press OK when a
particular mission leg(s) combination is acceptable. Continue this step until all unscheduled
request legs are scheduled. A sample scheduling with example scheduling data is shown in

Figure 2.5.

Finally, save the work to permanent storage by selecting FILE->SAVE_TO_DB in the
pulldown menu.

17

 DECISION SUPPORT -

FILE

vassiontds 1 _

1 EDAR Y
EDBT
EPVA
ENKR
EKTS

oW N
z %z =z

n

TCAQD E DEPT
"REQ ID: 8

L DEPT
U'POC: P0G LEAD PAX:

Figure 2.5 Scheduling screen with sample data.

18

Miss Origin Destination PAX Violation
Id ICAO Date Time ICAO Date Time #
30500 EDAR Y 5/Apr/95 0830 EDBT N 5/Apr/95 0915 O -none-
EDBT N 5/Apr/95 1030 EPWA N 5/Apr/95 1115 5 -none-
EPWA N 5/Apr/95 1230 ENKR N 5/Apr/95 1520 5 -none-

ENKR N 5/Apr/95 1635 EKIS N 5/Apr/95 1905 0 -none-

EKTS N §5/Apr/95 2020 EDAR N 5/Apr/95 1935 3 -none-

40084 EDAR Y 5/Apr/95 0400 LICD N 5/Apr/95 0615 O -none-

LICD N 5/Apr/95 0730 LYBT N 5/Apr/95 0915 2 -none-
LYBT N 5/Apr/95 1030 EPWA N 5/Apr/95 1140 2 ~none-
EPWA N S5/Apr/95 1255 EDAR N 5/Apr/95 1420 2 -none-

30502 EDAR Y 4/Apr/95 2300 GMML N 5/Apr/95 0320 0 -none-

GMML N 5/Apr/95 0450 EGTE N 5/Apr/95 0945 2 -none-
EGTE N 5/Apr/95 1100 EGNB N 5/Apr/95 1135 7 -none-
EGNE N 5/Apr/95 1250 EDAR N 5/Apr/95 1455 4 -none-
40085 EDAR Y 5/Apr/95 0730 EHVB N 5/RApr/95 0805 3 -none-
EHVB N 5/Apr/95 1230 EDAR N 5/Apr/95 1305 3 -none-

Table 2.2 Missions for requests in Table 2.1

19

2.8 Justifying Need for a GUI Environment

GUI applications acts as a bridge for the user to communicate with the back-end processing
module, hide complexity of the processing, and provide an easy method to present and solve
problems. Without a front-end GUI, the scheduler has to have sufficient knowledge about a
problem-solving domain, processing complexity, data storage, and manipulation [15]. In
other words, the GUI permits the user to abstract from task details and concentrate on
higher level issues. The GUI also helps the user to better visualize the problem, suggest
options, compare solutions, and edit problem definitions with ease. The interface checks a
user's authority to perform certain tasks, or it may require confirmation before performing
potentially costly or irrevocable actions [16]. It integrates various software technologies like
client-server computing, complex data storage and retrievals, heuristic algorithms, ete. to
provide solutions for end-user problem.

The scheduling environment handles a huge amount of data. It has approximately 10,000
different airport information, hundreds of passenger details, around 20 aircraft in the fleet,
and up to 20 requests for schedules coming in every day. Managing this huge data without a
user interface is tedious. An interface allows a scheduler to perform tasks faster and keeps
the user’s interest over longer periods without rest, by using colorful displays and intuitive
screens, as scheduling is a routine task. Considering the above advantages and the volume of
data handled in the system, there is strong preference for using a graphical user interface in
aircraft scheduling software system.

2.4 Context Relative to Literature

As this report concentrates on the user interface all of the user interface codes are developed
in X window systems. It becomes relevant to briefly talk about X concepts and architecture in
the next paragraph. DEC-VUIT, a User Irterface Management System (UIMS) from Digital
Equipment Corporation, is used to quickly prototype screens in DAKOTA. Its features and
functions are briefly described in Section 2.4.2. All pictures in the on-line help sub-system are
displayed using XPM library calls. XPM picture formats and library calls are briefly
enumerated in Section 2.4.3.

2.4.1 X Window Systems

The X window system is an industry standard software system that allows programmers to
develop portable graphical user interfaces. One of the most important features of X is its
device-independent architecture. The Massachusetts Institutes of Technology (MIT) initially
proposed and developed X, and it later became the responsibility of the X Consortium. The X
window system is complex, but it is based on a few premises that can be quickly understood.
The first and most obvious thing to note about X is that it is a windowing system for
bitmapped graphics displays. In bitmapped graphics, each dot on the screen (called a pixel or
picture element) corresponds to one or more bits in memory. In X, a display is defined as a
workstation consisting of a keyboard, a pointing device such as mouse, and a screen. The
second thing to note is that X is a network-oriented windowing system. The program that
controls and manages a display is known as the server. The server acts as an

20

intermediary between user progi'ams called clients or applications, running on either the
local or remote systems [9]. The server performs the following tasks:

e Allows access to the display by multiple clients

e Interprets network messages from clients

e Passes user input to the clients by sending network messages
e Performs drawing-graphics on behalf of the clients

e Maintains complex data structures, including windows, cursors, and fonts, and shares
those among clients

The X window system provides an event-driven programming paradigm. An event can be
initiated by the user or the system. Events include user input (key-press, mouse click, or
mouse movement etc) as well as interaction with other programs. For example, if an
obscured portion of a window is exposed when another overlapping window is moved, closed,
or resized, the client must redraw it. All the events are first trapped by an X server and
passed on to an X client through a queue. Events are placed on a queue in the order they
occur and usually are processed by clients in that order. Figure 2.2 depicts the client-server
model of the X window system.

Client Application Client Application
Xlib Xlib
X Window protocol reques Events & requests are passed
are sent from clients. back to clients.

_
Network

X Server

Device Drivers

Figure 2.6 X client-server model.

The client uses the Xlib layer to communicate with the server using a protocol. The protocol
used in such communication is called X protocol. The X protocol specifies what makes up each
packet of information transferred between the server and client. There are four types of
packets transferred via the protocol: requests, replies, events, and errors. A

21

request protocol is generated by Xlib and sent to the server. A protocol request can carry a
wide variety of information, such as a specification for drawing a line or an inquiry about the
current size of a window. A protocol reply is sent from the server to the client in response to
certain requests. Not all requests are answered by replies, only the ones that request
information. An event is sent from the server to the client and contains information about a
device action or about a side effect of a previous request. A protocol error tells the client that
a previous request was invalid. An error is like an event, but it is handled slightly differently
within Xlib. So far X concepts and architecture were discussed. The next paragraph discusses
X Toolkits (Xt) and the Open Software Foundation Motif (OSF/Motif), which are layers over
Xlib developed for the programmers’ convenience.

The Motif is a layer over X Toolkit (Xt), which in turn is layered on top of Xlib, thus
extending the basic abstractions provided by Xlib. Although Xlib provides the fundamental
means of interacting with the X server, developing a complex application using Xlib is a
formidable task. X Toolkit Intrinsics (Xt) provides a higher level programming interface with
objects known as widgets, mechanism for dispatching and handling events, and an easy way
for handling widgets geometry. Xt supplies the substrate for creating a set of widgets
responsible for specific aspects of a user interface. Motif uses the Xt substrate to build base
classes and specialized subclasses of widgets for variety of purposes [9]. Apart from this,
Motif adds a number of features that are of convenience to the application programmers in
building complex applications. DAKOTA uses the facilities provided by Motif, Xt, and Xlib
layers. Figure 2.3 depicts the layered architecture of the X window system.

Application

M otif

X Toolkit

X Window System

OS & Networking

Hardware

Figure 2.7 X window systems layers.

22

2.4.2 DEC-VUIT

DEC-VUIT is a User Interface Management System (UIMS) from Digital Equipment
Corporation (DEC). DEC-VUIT was used in developing all screens in DAKOTA. It is a
graphical tool to quickly paint screens by point and click. Once a screen is painted, an ASCII
file can be generated containing User Interface Language (UIL) scripts from the DEC-VUIT
tool. The UIL is a specification language for describing the screen attributes such as width,
height, color, font, etc. for display objects such as menus, dialog boxes, labels, push buttons,
ete. The UIL also specifies the routines to be called when the interface changes state as a
result of user interaction. A UIL containing the list of objects and object resources is compiled
into a UID file, using the UIL compiler. The contents of the compiled UID file can then be
accessed by various Motif Resource Management (MRM) functions from within an
application program to query or modify the characteristics of an object.

Although there are many advantages to using DEC-VUIT and its UIL file, there are several
disadvantages, such as no support for dynamically modifying callbacks for widgets. Since
DAKOTA is required to dynamically modify widget callbacks, a solution for this problem was
needed. Therefore, a UIL2C compiler was developed, for compiling a UIL script into
equivalent C code. This C code helps improve the display performance of the application and
also allows the user to dynamically modify widget callbacks.

2.4.3 XPM - X PixMap

The DAKOTA displays pictures in the on-line hypertext help sub-system. The pictures are
stored in a separate file in XPM format [10]. The XPM library is a set of calls enabling picture
data to be read from an ASCII file and displayed on the screen. There are quite a few picture
formats available in practicality, but XPM was chosen because for the following reasons:

e XPM picture data files are machine independént. These files have a sequence of ASCIL
characters which can be easily transported either through a magnetic medium or through

e-mail.

e Picture format presents a C syntax, in order to provide the ability to include XPM files in
C and C++ programs. As DAKOTA was developed in C language it became natural to use

XPM.

e There are a rich set of function calls available to manipulate XPM pictures.
o Editing a picture can be done using any text file editor, as the XPM picture file is ASCII.

The following is a template for an XPM picture file. There are basically seven sections to an
XPM picture file:

e Header line
e Declaration and beginning of assignment line
e Values

e Colors

23

e DPixels
e Extensions

e End of assignment

Header Line: This line contains the comment keyword /* XPM */.

Declaration and Beginning of Assignment Line: This line is composed of "static char *
<variable_name>[] = {". The values section is a string containing four or six integers in base
10 that correspond to: the pixmap, width, height, number of colors, and number of characters
per pixel.

Colors: This section contains as many strings as there are colors, and each string is as
follows: ’

chars - {<key> <color>}+

where chars is the <chars_per_pixel> length string representing the pixel, <color> is
the specified color, and <key> is a keyword describing in which context this color
should be used.

Pixels: This section is composed of <height> string of <width>*<chars_per_pixel> characters,
where every <chars_per_pixel> length string must be one of the previously defined groups in
the <colors> section.

End of Assignment: This section ends the formats with a closing brace "}".

The XPM library provides a set of Xlib-level functions which allow the programmer to deal
with images, pixmaps, and the XPM file. In DAKOTA the XpmReadFileToPixmap() function
is used, which creates a pixmap from XPM data file.

3. USER INTERFACE DESIGN ISSUES

DAKOTA incorporates several Graphical User Interface (GUI) design principles. This section
summarizes GUI design principles, illustrating how GUI is employed in this package. Many
of the user interface design concepts are obtained from style guides [7] [8].

3.1 User Orientation

The DAKOTA system carefully designed to solve the needs of the end-user. Users should feel
they are in total control of the application, not just following a sequence of steps provided by
the system [11]. Changes can be made, and the capability of undoing the work later is
provided. The user interface avoids modes that severely restrict the interactions available to
the user at any given time. Apart from modes there are other characteristics that influence
the user interface design, which are discussed in this section.

24

3.1.1 Direct Manipulation (DM)

The interface gives users direct and intuitive ways to accomplish their tasks. The object-
action paradigm supports this principle. The user performs tasks by selecting an object (such
as an icon, a window, or some text) and then selecting an action (such as move, update, or
delete) for that object. Manipulating objects directly, although not appropriate in all
situations, is often easier than typing complex commands [16]. For example, it is much easier
to move a window by dragging it with the mouse than by visually estimating new coordinates
and then typing them into a dialog box. In DAKOTA, users can get more information about a
mission by directly clicking on one of the legs in the map screen, instead of typing the
mission identifier in a dialog box.

3.1.2 Consistency

In DAKOTA objects and elements are consistent within and among applications [8]. There
are two points in building a consistent user interface. First, the user interface should be
consistent with its actual real-world process. This helps the user of the application to easily
adapt and learn the computer-based application. Second, each user interface screen should
be visually and functionally consistent. This helps both the designer and the developer
produce a well-designed, reusable, standard interface object. It also helps the user to become
acquainted with all parts of the application with ease as every segment of the application has
a similar look and feel interface element. In the DAKOTA schedule screen, scheduling is
completed by first clicking on a request leg, followed by selection of mission leg(s). In the real
world while scheduling manually, each unscheduled request leg in a request is associated
with mission legs, one by one on paper, to achieve the final goal of solving the problem. Here,
how one would think and act is simulated in solving a problem manually, by providing an
efficient user interface and suggesting all possible mission legs where a request leg would fit.
Another example is that the map screen enables visualizing fleet activity by day. In the
previous systems, schedulers had to mentally visualize a day fleet activity. In DAKOTA, the
system displays all the missions, unscheduled requests, and unused resources in the screen.
Therefore, the users can concentrate on actually generating an efficient schedule.

3.1.3 Clarity

The application interface should be visually and conceptually clear. Visual elements should
be immediately comprehensible, ideally because they relate to real-world analogs, and should
be arranged so that their functions are comprehensible. Interface text should be clear,
unambiguous, free of jargon, and consistently used to refer to the same meaning. DAKOTA
uses the scrollbar in all screens wherever we need to show more information than could fit on
the screen. A scrollbar has two arrows, one at each end, and a slider in the middle portion of
the scrollbar. The position and size of the slider indicate which portion of data in the screen
is currently visible. Space on either side of the scrollbar indicates amount of data before and
after the data that are currently visible on the screen. This type of user interface object is
immediately comprehensible to the user without much explanation. It is also conveys the
idea of the developer, that is, how much data the end-user could see on the screen.

25

3.1.4 Groupings

Grouping of functionally related interface objects greatly enhances the clarity of the user
interface. Grouping reduces search time for required information in a complex user interface
environment. In DAKOTA, all mission-related functionalities are grouped under the
MISSION pulldown menu on the scheduling screen.

3.1.5 Feedback

The DAKOTA user interface is highly interactive. The user receives immediate feedback for
actions within the application. If the user of the application selects an interface or data object
with the mouse, the application provides visual feedback that the object is selected. The
response is could be graphical, textual, auditory or some combination. Clicking on a row
using the mouse in the text editing screen changes the color of the clicked row. This visually
assists the user in knowing that the clicked row is the row that the user intended to select for
editing. DAKOTA changes the background color of the selected row from white to cyan.

3.1.6 Compatibility

It is important that input and output be compatible. For instance, in the map screen a text
field accepts values in date format. Changing the date in the text field is possible either by
typing a new date or by clicking the up arrow or down arrow button to increment or
decrement dates using the mouse. Compatibility also refers to the presentation of data being
compatible with the environment where the application is used. For instance, different
countries follow different date formats. The United States follows mm/dd/yy, where mm, dd,
and yy refer to month, date, and year; but European countries follow dd/mm/yy. In DAKOTA,
these types of situations are handled by letting users specify the date format in the startup
configuration file.

3.1.7 Flexibility

Flexibility refers to the providing alternative ways for the user to achieve a certain goal. For
example, the aircraft data entry screen is used to both view and maintain aircraft
information. The aircraft screen can be invoked in many ways. The screen can be selected
from the pulldown menu in the Main Control Window(MCW), and it can also be selected from
the map screen. It is logical to provide a way to get to all data entry screens from the MCW,
and it can be useful for the schedulers to know airport details when they are viewing a list of
missions and requests in the map screen.

A flexible user interface also refers to capability of the user changing the program to better
suit individual needs and preferences. It is difficult for a user interface designer to foresee all
the user preferences while designing a user interface. In DAKOTA, this is partially
addressed by providing a programmable user interface, also called a customizable user
interface. This interface provides a means by which some of the final design choices can be
delayed until the final commitments to the user are established[16]. However, too many
choices creates the possibility of spoiling the aesthetics of the user interface. DAKOTA
provides a customize button to the user to select options for changing the map display or the
mission display. The map display option enables the user to customize the display of the data

26

on the map. Customizing is done by clicking on the check box shown in Figure 3.1.

Figure 3.1 Color selection dialog box.

The Map can be customized to display the following information on the screen in any
combination:

e Country Border

e Country Name

e Rivers

e Lakes

e Bases (shown as small circles; large circle corresponds with main base)
e Base Labels (4-character length code, i.e., ICAO)

e Mission Routes (each mission in shown in different color)

e Request Routes (differentiated from missions by dotted lines)

e Color Panel (shows color associated with a mission)

3.1.8 Usability

Usability of the application can be improved by contextual field research, a growing area in
Human-Computer Interaction (HCI). Usability emphasizes the importance of context in

27

understanding usability issues. A more focused investigation of the existing systems to
uncover the winners and losers in functionality and interface designs will help design the
new system [12]. This investigation addresses questions such as: What about the ability of
the existing systems to meet the expectations of the domain experts? and What elements run
counter to these expectations? Synthesis of these findings leads to component design
strategies and hypotheses. In our scenario, end-users were using a primitive DOS graphics-
based system. A thorough study of the existing system and user opinion helped DAKOTA to
become a robust problem-solving application.

The qualitative assessment of the learnability and usability are next tested with the domain
experts interacting with varying levels of simulated systems. In this iterative design process
domain, experts are provided with various choices of placement of the GUI object (e.g.,
buttons, menus, etc.), and their feedback is applied to the simulated systems. Experts are
then given a composite task from their application domain, which further helped to refine the
usability of the system. This type of iterative process should be continued even beyond the
point of the analysis phase and carried well into the design and initial implementation
phases. S

Knowledge should be built into the system to monitor the usage of the on-line help
component. This information includes how many times a particular help topic/section/section
is visited and how many different domain users have visited them. This is helpful in
upgrading the system both in terms of usability and in continually enhancing the system
[17]. For example, if a particular on-line help section/topic is visited by many domain users,
then there is a possible problem area in usability or in the way the process is being modeled
in the interface. With this assistance, the problem can be located and corrected after
discussions with the schedulers. The on-line hypertext help sub-system in DAKOTA has this
feature built-in; it stores information about how many times a particular topic is referred to
in the repository.

3.1.10 Color

Use of color in human-computer interaction provides an opportunity for the interface
designer to effectively communicate the dynamics of the system. Color assignments to
different components of the display objects are part of the design activity [13]. Apart from the
interface designer codifying colors of different display components, the designer should also
provide the end-user the option of choosing a color of choice for some display objects in a
controlled manner. But research has shown, when users are given free access to color, a wide
variations of color combinations are produced, destroying the aesthetics of the presentation
module of the system [14] [18]. Thus, there should be limited flexibility for changing the color
of display items.

The schedule screen in DAKOTA uses colors to differentiate soft time and hard time
violations. Soft time is a time constraint on the request leg that is preferable but could be
violated; hard time should never be violated. If the user, while scheduling a request, violates
a hard time constraint, that request leg turns red, thus sending a strong warning to the user
about the violation. Soft time violations are shown in yellow and the request legs that are
bound to all time constraints are shown in green. Colors are also used on the map screen to
differentiate different missions, which aids the user in possibly merging two or more
missions, provided time constraints are not violated.

28

3.1.11 Focus

A good user interface allows the user to clearly focus on the material with which he is
working. Thus, the user should not be forced to focus on any functions other than the one
intended, or no focus at all should be provided. In designing a user interface, the user of the
system should not feel the need to only follow a path provided by the system. The user should
be able to make changes with the freedom of undoing the work later if necessary. And the
order of the actions performed by the user should not be constrained wherever possible,
provided application integrity is not affected. There are three ways that users can be allowed
to interact with the system:

1. Freely allowing the user to change instances of the data. Just before passing the data to
the back-end or the application domain, perform the necessary data integrity check, and
leave the rest to be handled by the application domain.

2. Perform a data validation and integrity check after every user interaction with the
system. Also provide only the necessary subject and object to the user for interaction.
This method advocates full control over the way users interact with the system.

3. Use a mix of both of the above methods, thereby providing some freedom to the user and
controlling the way user interact with the system.

The request screen is used to enter travel requests submitted by the clients. This screen is
divided into four sections. The first section that is at the top of the request screen is used to
capture request header data. This includes the name of the person initiating the request, the
contact phone number, date on which the request is opened, etc. The second section is used to
capture all the information about all the passenger's flight request. The third section
captures the origin-destination pair for each request leg. Finally, there is a remarks section
used to put remarks related with the request if any, this remarks field could be used to tell
the scheduler of any particular constraints or preferences by the passengers at the time of
scheduling. Within the second and third sections, there is a full-fledged editing facility. The
data entry person can freely add, modify, and delete items within these two sections. This
capability gives the user freedom in making a mistake and coming back to correct it later
without imposing the order in which data are entered by the user interface. This capability
falls into the first of the above-listed methods, where the user is freely allowed to interact
with the user interface, and very little restriction is posed in the way action is taken with
various display objects.

In another scenario, the map screen shows one day’s fleet activity. The map screen (refer to
the appendix for more detail) contains various screen objects with which a user can directly
interact. Initially, when the screen shows up on the display device, only the text field for
entering the date is given focus. All the rest of the objects are grayed out or desensitized.
This concept applies the second of the above-listed methods, where application takes total
control of the way in which the user interacts. The reason for obtaining total focus of the user
to a text data entry field is that, without a valid date, the rest of the display objects on the

map screen will not make any sense.

29

3.1.12 Modes

This section discusses modes, or hidden information. Modes refer to variable information
affecting the meaning of what the user sees and does [15]. For example, a novice user of the
'vi' editor can easily become confused between the edit and command mode. The command
mode allows the user to enter commands to navigate around the text file, and the edit mode
allows the text file to be changed. The reason for the confusion is either that the mode is not
made evidently visible on the screen, or it is not noticed by the user. However, there are also
some advantages in using modes:

1. Simplifies program coding and testing, as the number of combinations is reduced in a
particular mode. If there is only one mode, it would have to be tested for combinations of
the combinations in all the different modes.

2. Protects the user from mistakes. For example, a command "destroys something" does not
have any effect in the standard mode, other than causing a warning; a separate mode
must be entered before "destroy" is activated.

3. Makes invisible or desensitize a few screen objects in certain modes, thereby protecting
the user from making those choices that are not appropriate to a particular context.

4. Provides a means for an application system to take control over user interactions and
guide them through the process.

In DAKOTA, modes are used in places where it is appropriate to enforce a logical sequence of
steps in the way the user interacts with the system. This method also prohibits users from
unnecessarily executing actions that are not relevant to the scenario. Appendix Figure A.1
shows an atlas data entry screen used to add a new atlas record, modify an existing atlas
record, and delete the ones not used from the database. These three operations are not
related to one another in any way. They can be performed in a totally disjoint manner.
Therefore, three modes exist in this screen, called the add mode, modify mode and delete
mode. The text field on the top right corner of the screen displays the mode the user is in at
any point of time. In one mode, only certain things are allowed. For example, in delete mode,
the atlas data will not be able to be modified on the screen. Similarly in modify mode, the
system will not allow the user to delete the atlas record. This feature protects the user from
accidentally removing any data from the database. A particular mode can be initiated by
selecting either ADD/MODIFY/DELETE from the option menu button. Figure A.1, shows NO
EDIT in the option menu, clicking on the option menu will drop down other options that can
be selected. The user can return from a mode either accepting or discarding the operation by
selecting the OK button or CANCEL button, respectively. Therefore, the user is provided
with only one way to enter and leave a mode, thereby avoiding all the confusions that could
be created. Also, all the display objects that are not relevant to the context are grayed out or
desensitized. Thus, the user will not have access to display objects that the system does not
want accessed.

30

4. SYSTEM OPERATIONS AND FUNCTIONS

Section 2 introduced the scheduling problem and provided an overview of system behavior.
This section presents the functions of the system and how DAKOTA helps in solving
problems. First is an explanation of how the flying travel request is entered into the system,
the starting point for the scheduling process. Next, a description is given of how a single
request can be manually scheduled followed by scheduling more than one request in a
session. Finally, this section explains how manual and automatic scheduling using an
optimization model are used together in scheduling a group of requests. This section lists the
steps involved in a scheduling process. An example problem and how it is solved is given in

Appendix-E.
4.1 Request Entry Screen

The request entry screen is used to enter all information pertaining to a request. Entering
request information is performed either by the client who wants to fly or by schedulers on
behalf of the clients. All the information is validated before it is stored in the database. The
type of validation performed on input data depends on the type of data. More details about
validation are given in subsequent sections of this section. There are four main parts to the
scheduling screen (Figure 4.1 shows a sample request screen):

e Request Header
e Request Passenger Details
e Request Leg Details

¢ Request Remarks

4.1.1 Request Header

The request header section is used to input the requesting date, the requesting person
contact phone number, and the aircraft type preference, if any. All the information in this
section is optional except the requesting date. The entered date should be a valid date; and if
the user enters an aircraft type, it is checked against the aircraft database to ensure that it is

a valid aircraft type.

31

Request
Header
Hequestd 8 Section

Hequesting 3gency POC

bDate of Heg Home Phans

Off Phane

Heg Plane Type

Last Mame Firat Mame Fitle

I__ Passenger
1~ Details

- TOTAL: 8
» OF CRQ
coBE 3

[SOFTTIME =1 | WARD TME I | Leg L
= Details

Remarks

Section

Figure 4.1 Request eniry screen.

4.1.2 Request Passenger Details

Passengers traveling in a request are entered in the passenger detail section. The request
screen shows the passenger’s full name, social security number, and phone number. Details
about five passengers are displayed at the same time; if more than five exist in a travel
request the user can browse through the list of passengers using the NEXT and PREVious
button. This screen is used to add or remove passengers in a travel request. Modification to
passenger details if any, can be done in the passenger data entry screen. Clicking on a
passenger will highlight the row and make that row current; pressing the delete button will
delete the highlighted passenger from the request. Pressing the ADD button creates a blank
row following the highlighted row, and the cursor moves to the editable text field. While
adding a passenger to a request the user must input only the passenger’s first name, last
name, both names or some parts of the name and the system will retrieve other information
and display it on the screen. If there is more than one passenger who satisfies a particular
name a dialog box pops up with the list of all names and social security numbers of the
passengers. The user can select the passenger they want to be on the request by using the
mouse device. For example, if only A is entered into the last name field, the system retrieves
all the passengers whose last name starts with A and displays them in a dialog box. One
name could be chosen from the list of names in this request. Therefore, the whole name of a
passenger need not be remembered. A passenger is added to the list of passengers traveling

32

on that request once the user presses the save button.

4.1.3 Request Leg Details

There are two parts to a request leg entry: departure-arrival data entry and passenger to
request leg association. Departure-arrival entry is done in the request leg section of the
request screen, and passenger to request leg association is done in a separate dialog box. A
request leg is a combination of departure and arrival, location and time information. Every
location is identified by a 4-character length identifier, also called ICAO. Departure and
arrival time are expressed as local date and time. In addition to the time, the user must also
provide the firmness of the time, hard or soft. Hard times are those that cannot be violated,
and soft times are preferred times which can be altered if necessary to obtain a better
schedule. To summarize, a request leg constitutes the following information:

e Departure ICAO

Earliest departure date/time

o Latest departure date/time

e Indication of firmness of departure time
e Arrival ICAO

e Earliest arrival date/time

e Latest arrival date/time

e Indication of firmness of arrival time

e Priority code

e Number of passengers in the request leg

There are two time windows in a request leg. The earliest and latest departure date and time
in the above list refer to the departure time window, and earliest and latest arrival date and
time refer to the arrival time window. If the user inputs a departure or arrival time, the
system will automatically prompt other times based on the speed of the fastest and slowest
aircraft that can fly between two stops or locations. The user can either change the time or
accept whatever the system provides. For example, if the departure and arrival locations are
EDAR and EDDN, respectively and the earliest departure time is known to be 4/NOV/94
01:00, the system calculates other times which are the earliest time the fastest aircraft in the
fleet will arrive at EDDN is 4/NOV/94 01:30 and the latest time the slowest aircraft in the
fleet will arrive at EDDN is 4/NOV/94 04:00. This is just a suggestion; the users can either
accept these suggested times or change at will to suit their needs.

The second part of this section is associating a passenger to a leg. This is done in a separate
dialog box which displays if at least one of following conditions is satisfied:

1. The total number of passengers in the request is not equal to the number of passengers
traveling in a request leg.

33

2. The number of passengers in the current request leg is not equal to the number of
passengers in the previous request leg.

3. The users has typed 'Y' in the CHG PAX field, meaning that he wishes to change the
passenger association to a request leg.

Figure 4.2 shows a sample passenger-leg association dialog box. There are two list boxes, one
on the left-hand side containing the list of passengers who are on-board in the request leg
and one on the right-hand side contains the list of passengers who are not traveling in that
request leg. The user can move passengers between on-board and off-board lists by clicking
on an item.

| 7S - Bagley , Norman

3
:
|

Figure 4.2 Passenger to leg association dialog box.

A validation routine checks to see if the entered date and time are valid. It also checks if the
entered departure and arrival locations are in the atlas database. DAKOTA provides a great
deal of flexibility to end-users by letting them enter all or part of the location identifier or
ICAO. If user enters part of the ICAO code, the system retrieves all locations that match the
criteria and displays them in a dialog box. The user can select the location they want by
clicking on an item. If the selection criterion matches only one location in the database, it
retrieves that ICAO code and fills it in the location field on the screen.

The user can see five request legs at a time. The user can browse through all the request legs
using the NEXT and PREVious button. The total number of request legs in a request is
shown on the right top corner of the request leg section, as shown in Figure 4.1. The user can
add a new request leg, modify an existing request leg or delete a request leg by pressing the
add, modify, or delete button, respectively. Clicking on a leg will highlight and select a
request leg for modification or deletion. If the user presses the modify button, the highlighted
request leg will appear in the editable text field where the information can be changed.
Pressing SAVE or the CANCEL button will either store changes in the database or discard
them, respectively. Similarly, pressing the DELETE button will mark a highlighted request
leg for deletion. Once the user presses the save button, all request legs marked for deletion
are removed, both from the database and from the list shown on the screen. Now any request

34

leg below the deleted request leg shifts up to fill in the deleted leg's spot.

4.1.4 Request Remarks

The remarks section is used to enter any comments that would help the scheduler during
mission scheduling. It is optional; the user could either choose to enter some text or leave it
blank. There is no validation performed in this field, but it is stored in the database.

The above descriptions indicate the user can input request header information; add and
remove a passenger in a request; add, modify, and delete a request leg; make a passenger go
on-board or off-board a request leg; and finally enter request remarks. All of these operations
pertain to manipulating a request. The user can retrieve a request and all its passenger and
leg information from the database by providing one or more the of following items:

e The point of contact (POC)
e The request date

o The request identifier

Once the system identifies a request, it retrieves all the data and displays it on the screen. If
more than one request satisfies the selection criteria, a dialog box pops up with all the
requests. The user can choose the request they want to work with by clicking on a line in the
dialog box. Once a request is selected, changes may be made to that request as mentioned in
the previous description.

4.2 Defining and Solving the Problem

The users employ the scheduling screen to schedule the requests for travel. There are two
distinctive steps in a scheduling session, defining the problem and solving the problem.
Output from a scheduling session is one or more mission(s) with a scheduled request leg(s). A
scheduling screen can display only one scheduling session, but a scheduler can work on more
than one scheduling session at a time by having more than one scheduling screen open.

The definition of a problem consists of identifying unscheduled request legs, then identifying
all the available aircraft. Aircraft and tail number are used interchangeably. The tail number
is a 5-digit number that uniquely identifies an aircraft. The next step in the scheduling
process is solving the problem, which can be done in three ways:

e Using only the manual scheduling process

e Using only the automatic (optimiztion) solver

e Using both the manual and the automatic techniques

The output of this process is one or more mission(s) with the aircraft marked as being used
for a specific block of time and one or more unscheduled request legs marked as being

scheduled. In the subsequent sections, a description is given of each of the above solving
techniques is used to achieve an optimum schedule. Before going into actual scheduling, the

35

next section presents an overview of the scheduling screen.

4.2.1 Overview of the Scheduling Screen

There are two parts to a scheduling screen. The mission work area is on the top half of the
scheduling screen, and the request work area is on the bottom half of the scheduling screen.
There are several buttons associated with the mission work area and a few the with request
work area. These buttons are used to manipulate the missions and requests displayed in
their respective work areas. The mission work area shows information about missions.
Details about one mission at a time are displayed. The NEXT and PREVious buttons are
used to browse through other missions in a scheduling session. The first line in the mission
work area displays mission header information including mission identifier, tail number,
mission type, SPAR number (it is a number specific to USAFE for identifying a mission), and
finally, the status of the mission. Data from the second line onward pertain to legs in that

mission, also called mission legs. A mission leg consists of the following:
e Departure location and time -

e Arrival location and time

e ETE (Estimated Time Enroute)

e Priority of the mission

SR : o T TOTAL MISSIONG
ICK FUEL BATE LOC ZULY ICAD FUEL DATE L0C ZULy EFE PRI YIOLATION PEX

O R P S T S O O O A

Xt 5

O FETY -
¥ KBRY

ICkS E DEPT 1CAD

Figure 4.3 Scheduling screen.

36

The mission work area displays seven mission legs at a time. More mission legs, if there are
any, can be seen by scrolling, using the scrollbar located at the right side of the mission work
area. There is an array of editable fields just above the mission work area. These editable
fields are used to input and change information about a mission leg. The subsequent
paragraphs outline how to input and change mission leg information. The total number of
missions in the current scheduling session is shown above the mission work area.

The request work area shows information about one request at a time. The NEXT and
PREVious buttons are used to browse through other requests in the current scheduling
session. The first line in the request work area displays request header information. This line
contains a request identifier, point of contact, and name of the leading passenger. Data from
the second line onward pertains to request legs including requested departure and arrival
location and time and total number of passengers in a request leg. The request work area
displays seven request legs at a time. More request legs, if any, can be seen by scrolling,
using the scrollbar located at the right side of the request work area.

The functions of the buttons in the mission and request work area are described in the
manual scheduling section. In addition, there are three pulldown menus located at the top of
the scheduling screen. They are used to manipulate a scheduling session, define a problem,
and invoke the automatic scheduler. Figure 4.3 depicts a scheduling screen with sample data.
The next section discusses how to define a problem.

4.2.2 Defining a Problem

Defining a problem is the first step in a scheduling process. The steps below are followed in
defining a problem:

o Identify aircraft for utilization.

e Identify unscheduled requests or request legs.

4.2.2.1 Identifying Unscheduled Requests or Request Legs.

Identifying is completed by clicking on the SELECT REQUEST button from the
DEFINITION pulldown menu located at the top of the scheduling screen. Figure 4.4 shows a
sample SELECT REQUEST dialog box. The user could select a request for scheduling by
entering either request ID, name of the lead passenger, point of contact, or any combination.
The system retrieves all the unscheduled requests from the database that satisfy the criteria
given in the dialog box and displays in the list box. The user can continue selecting requests
and accumulate them with already retrieved requests. Double-clicking on an item in the list
box will remove the request leg from consideration for scheduling. Once the user is satisfied
with the list of unscheduled request legs for scheduling, he or she can press the OK button.
This procedure will display relevant information about all the selected request legs on the
bottom half of the scheduling screen.

37

Request selection Criteria
- Request ID
- Lead Passenger
- Point Of Contact (POC)

B Selected unscheduled
request list.

T S A M S T S e S

OK | CANCEL| HELP |

Figure 4.4 Unscheduled request selection dialog box.

Appropriate selection of unscheduled request leg(s) is essential factor in obtaining good
optimum schedule. Tools like the map screen can help make good decisions about a request
selection. Basically, the map screen allows the user to view all the scheduled missions and
unscheduled request on a daily basis. This screen also shows statistics about aircraft
utilization in terms of total hours flown against annual budgeted hours, and a time window
of all aircraft utilization and the one available for scheduling on a given day. This
information is useful in identifying aircraft for scheduling. More about the map screen and
how it aids in visualizing a day fleet activity is narrated in Section 6.

4.2.2.2 Identifying Aircraft.

A resource consists of ordered pairs of aircraft and operational time windows. An operational
time excludes the amount of time an aircraft is in service, in maintenance, specially
allocated, or unavailable for scheduling. A single aircraft in a day with a disjoint operational
time window can be considered as a unique resource. The scheduler must keep in mind the
approximate time windows of unscheduled request legs selected for scheduling in the
previous step. This will help one to choose an appropriate resource for optimum scheduling.
Identifying a resource takes place in one of following ways:

o Identifying existing missions flown by aircraft which can accommodate unscheduled
requests

e Selecting missions and modifying aircraft available time (i.e., increase the time window
of aircraft utilization for selected missions which enables scheduling unscheduled request

legs)

e Creating new missions using an available aircraft by blocking a specific span of that

38

aircraft’s time.

The first step above is implemented by clicking the SELECT MISSION button in the
DEFINITION pulldown menu at the top of the scheduling screen. Figure 4.5 shows a sample
SELECT MISSION dialog box. A mission is selected by entering either the existing mission
ID or mission date. DAKOTA retrieves all the missions that satisfy the criteria and displays
them in the list box. Selection of a mission triggers selection of all scheduled request legs in
that mission. Double-clicking on a mission removes that mission from the scheduling session.
The user can continue selecting more missions and append them to the list of missions
already selected. Once satisfied with the list of missions, the user presses the OK button to

display selected missions in the mission work area of the scheduling screen.

Mission selection Criteria
- Request ID
- From Date
- To Date

1 | Selected mission list

AR S Do A e B

Figure 4.5 Mission selection dialog box.

In the second method, the time window of the mission is modified such that it accommodates
unscheduled request legs selected in the previous step of problem definition. Clicking on the
MODIFY MISSION button under the DEFINITION pulldown menu displays a dialog box.
Figure 4.6 shows a sample MODIFY MISSION dialog box. For this method to work, the user
has to previously have selected the mission using the first method. The earliest time and
latest time fields in the dialog box are changed to accommodate an unscheduled request leg.

The third method is creating a new mission with an available aircraft and time window.
Clicking on the NEW MISSION button under the DEFINITION pulldown menu will pop up a
dialog box similar to the one in Figure 4.3. The user has to enter all the fields in the dialog
box and press the OK button. This will save the mission in a temporary buffer after
validating the aircraft type, tail number, and time window. A time window for aircraft
utilization is the time between the earliest and latest time. This time window should not
overlap with any mission already in the system. Now we have defined input for the

39

scheduling process. In the next paragraph, a description is given of how these data are used
in scheduling unscheduled request legs.

Figure 4.6 Mission header data entry screen.

4.2.3 Manual Scheduling

Before presenting scheduling as such, an overview of the operations available in the
scheduling screen is presented. Then the different types of scheduling problems faced by
schedulers are listed, including how the operations can be used to generate effective
schedules. There are two sets of operations available; one for manipulating missions and
another for manipulating requests. The operations are as follows:

Mission related:

e Append Stop

e Insert Stop

e Modify Leg

¢ Remove Origination Stop

e Remove Destination Stop

e No Edit

e Adjust Forward

e Adjust Backward

e Next Mission

40

e Previous Mission
e Save Mission

e Cancel Mission

Request related:

e Unschedule Request Leg

Schedule Request Leg

o Deselect Leg

o Next Request

e Previous Request

e Save Request

e Cancel Request

4.2.3.1 Mission-Related Operations

Append Stop: This function is used to append a stop to a current mission leg. Clicking on a
mission leg will make it current and highlight that row. After making a leg current, select
the APPEND STOP button from the option menu. This selection will create a new row after
the current row and let the user into the input origin location and time in the editable text
field for the new row. Departure details for the new row are derived from the current row.
After entering all information in the editable text field, press the OK button to validate and

save changes to the database. In other words, this operation adds a stop after the destination
stop of the current row. Table 4.1 shows before and after effects of appending a stop.

41

Before appending a stop (EPWA) to the first row:

Miss Origin Destination

No. Id Date Time Date Time

1 30500 EDAR Y G&/Apr/95 0830 EDBT N &/Apr/95 0915

2 EDBT N 5/Apr/95 1030 EDAR N 5/Apr/95 1115

After appending a stop (EPWA) to the first row:

Miss Origin Destination

No. 1Id Date Time Date Time
1 30500 EDAR Y 5/Apr/95 0830 EDBT N 5/Apr/95 0915
2 EDBT N 5/Apr/95 1030 EPWA N S5/Apr/95 1115

3 EPWA N 5/Apr/95 1200 EDAR N 5/Apr/95 1325

Table 4.1 Effect of appending a stop to an existing list of mission legs

42

Before inserting a stop (EPWA) to the first row:

Miss Origin Destination

No. 1Id Date Time Date Time

1 30500 EDAR Y 5/Apr/95 0830 EDBT N 5/Apr/95 0915

2 EDBT N 5/Apr/95 1030 EDAR N 5/Apr/95 1115

After inserting a stop (EPWA) to the first row:

Miss Origin Destination

No. Id Date Time Date Time
1 30500 EPWA Y 5/Apr/95 0700 EDAR N 5/Apr/95 0745
2 EDAR Y 5/Apr/95 0830 EDBT N 5/Apr/95 0915

3 EDBT N 5/Apr/95 1030 EDAR N 5/Apr/95 1115

Table 4.2 Effect of inserting a stop to an existing list of mission legs

Insert Stop: This function is used to insert a stop to a mission leg. Clicking on a mission leg will make it
current and highlight that row. After making a leg current, select the INSERT STOP button from the option
menu. This will insert a new row above the selected row and let the user enter destination location and time
in the editable text field. After entering all information, press the OK button to save changes to the
database. In other words, this operation inserts a stop before the origin stop of the current row. Table 4.2
shows before and after effects of inserting a stop in a mission leg.

Modify Leg: This feature is used to make changes to the current mission leg. Clicking on a mission leg will
make a mission leg current and shows that row in highlighted color. After making a leg current, press the
MODIFY LEG button from the option menu. This will bring current mission leg-related data to the
editable text field. The user can change information and press the OK button to save changes.

Remove Origination Stop: This feature is used to remove a departure or origination location from a mission
leg. First, make a row current by clicking on a mission leg. Select REM-O-STOP from the option menu.
This will remove the departure information from a mission leg and assign current mission leg's arrival
information to the previous mission leg, if one exists. Otherwise the whole mission leg is removed.

Remove Destination Stop: This option is used to remove arrival or destination location from a mission leg.
First, make a row current by clicking on a mission leg. Then, select REM-D-STOP from the option menu.
This selection will remove the arrival information from the current mission leg and assign the next mission
leg's arrival information to the current mission, if one exists. Otherwise, the whole mission leg is removed.

No Edit: This option is used to browse through the list of missions in a scheduling session. Browsing the
mission list is done using the NEXT and PREVious buttons.

Adjust Forward and Adjust Backward: This feature is provided as a convenience for the

43

scheduler. As a result of editing the times of mission legs, there may be turnaround violations. Turnaround
time is the minimum time necessary for aircraft refueling. This feature is described using an example in

Table 4.3.

Before editing mission leg’s time:

Departure Arrival

Mission leg 1 8:00 AM 11:00 AM

Mission leg 2 12:30 PM 3:00 PM

After editing mission Leg s time:
Departure Arrival
Mission Leg 1 9:30 AM 12:30 PM

Mission Leg 2 12:00 PM 3:00 PM

Table 4.3 Before using ADJUST FORWARD or BACKWARD feature

The departure time of mission legs violates the minimum turnaround time of 45 minutes. In
fact, it is earlier than the arrival time of the previous leg. Adjust Forward would shift the
time starting from the first mission leg. Adjust Backward would shift the time starting from
the last leg. The effect on the mission legs after choosing either adjust forward or backward is
given in Table 4.4:

Adjust forward:

Departure Arrival
Mission Leg 1 9:30 AM 12:30 pM
Mission Leg 2 1:15 PM 4:15 PM
Adjust backward:

Departure Arrival
Mission Leg 1 8:15 AM 11:15 AM
Mission Leg 2 12:00 PM 3:00 PM

Table 4.4 After using ADJUST FORWARD and BACKWARD feature on

44

the edited mission leg times

Adjust Forward slides times forward as needed to ensure that the minimum turnaround time is not violated.
The departure time of the first leg remains unchanged. Adjust backwards does the same, except it slides
times backwards, while the arrival time of the last leg remains the same and all other times are changed to
accommodate turnaround. This sliding of times does not affect the actual flight time.

Next Mission: This button is enabled when there is a next mission to the current session. Pressing the
NEXT button will clear mission work area and displays the next mission header and all its mission legs.

Previous Mission: This button will be enabled when there is a previous mission to current mission. Pressing
the PREV button will clear the mission work area and displays the previous mission header and all its

mission legs.

Save Mission: At any point of time there are at least two copies of all the missions and request information
preserved in main-memory. One copy will have original data as retrieved from the database. The second
copy is original data with user changes. This copy gives the user an option of reverting to original copy if
the user is not happy with the changes made. Pressing the OK button after any change will perform a set of
validations and updates to the second copy. The second copy of missions and requests is updated only if
user data passes validation. The list of validations performed is given in Section 5.

Cancel Mission: Pressing the CANCEL button discards all user changes and will not make any change to
any of the items mentioned above.

4.2.3.2 Request-Related Operations

Schedule Request Leg: This feature is used to schedule an unscheduled request leg on one or more mission
legs. The user has to click on the SCHEDULE LEG button, followed by clicking on the leg the user wants
to schedule. The system will automatically highlight the mission legs on which the unscheduled request
leg will fit. If there is more than one place that the request leg will fit, clicking the NEXT and PREVious
button in the request work area will help go through the alternatives. The user can click the OK button if
satisfied with an alternative mission leg(s) shown in the mission work area. This will schedule an
unscheduled request leg to highlighted mission leg(s). It will also increment the number of passengers
flying in that mission leg with the number of passengers in the selected unscheduled request leg. This
scenario is explained with the following example.

Let us assume there are three mission legs and one unscheduled request leg, as in Table 4.5. To schedule
Request Leg 1, clicking on Request Leg 1 in the request work area will highlight contiguous mission legs
that fly from request leg origin to destination. Request Leg 1 goes from locations A to F; Mission Legs 1,
2, and 3 together go from locations A to F. DAKOTA will determine all the combinations of contiguous
mission legs that match a request leg and display them to the user. The system’s suggestion can be
accepted by pressing the OK button when one of the alternatives is shown in the mission work area. This
will schedule that request leg onto the highlighted mission leg(s). The system will display a warning dialog
box, if any violation occurs.

Departure Arrival

Mission legs
ICAO ICAO in mission
work area

Mission leg 1 A B

PN

Mission leg 2 C D

Mission leg 3 E F
Request legs
k///// in request
work area
Request leg 1 A F

Table 4.5 Scheduling a request leg to mission leg(s)

Unschedule Request Leg: This option is used to unschedule an already scheduled request leg. First, click
on the UNSCHEDULE LEG button from the option menu; then, select a scheduled request leg from the
request work area. This will unschedule the selected request leg and will also decrement the number of
passengers flying in the mission leg(s) supporting that selected scheduled request leg.

Deselect Leg: This option allows the user to remove a request leg from a scheduling session. Press
DESELECT LEG from the option menu, and select all request legs that need to be removed from the

current scheduling session. Finally, press the OK button to accept the changes.

Next Request: This button will be enabled when there is a next request to current request. Pressing the
NEXT button will clear the request work area and display the next request header and all its request legs.

Previous Request: This button will be enabled when there is a previous request to current request. Pressing
the PREV button will clear the request work area and display the previous request header and all its request
legs.

4.2.3.3 Steps in Manual Scheduling

Typically, schedulers will be faced with one of the following scheduling scenarios.

e A single request is scheduled with single mission.

e A single request is scheduled with many missions.

e Many requests are scheduled with a single mission.

e Many requests are scheduled with many missions.

The first of the above is one of the simplest problems to solve. The successive scenarios become more
difficult as the number of requests and missions increase in a single scheduling session. The sample

scheduling problem in Section 2.2.2 covers all the different type of scheduling scenarios. The steps below
summarize the operations that are involved in a typical scheduling.

1. Select unscheduled request legs, as described in Section 4.2.2.1.
2. Create a new mission, or select an existing mission, as described in Section 4.2.2.2.

3. Create mission legs corresponding to each request leg, without violating the endurance of
aircraft. If a request leg takes more time than the endurance of the aircraft, insert more
stops for aircraft refueling. These stops are called fuel stops. Stops can be added to a
mission using either INSERT STOP or APPEND STOP. Sometimes it is necessary to
modify the time window or departure or arrival ICAQO to meet some of the request

46

time and location constraints. This can be accomplished by using MODIFY STOP.
4. Associate unscheduled request legs with mission legs, as described in Section 4.2.3.1.

5. Look for any violations, and remove them if possible. Severe violations are shown in red.
The next paragraph discusses more about different types of violations and how DAKOTA
identifies them.

6. Save the work in the database as described in Appendix B.

The next paragraph describes the different types of violations that can occur in scheduling.
4.2.3.4 Different Types of Violations

There are five types of violations possible in a scheduling scenario:

o Endurance violation

e Turnaround time violation

e Capacity violation

e Hard time violation

e Soft time violation

Hard and soft violations are related to requests, and the rest are associated with aircraft and missions. All
violations, except soft time, are considered severe and must be resolved. Severe violations are shown in
red, soft time violations are shown in yellow. Request and mission legs are shown in green, whenever there
are no violations. Endurance violations occurs when a scheduled flight time is more than the endurance of
the aircraft. For example, the endurance of aircraft C-21 is 4 hours. If a mission leg is created with flying
time of more than 4 hours, the endurance column in the mission work area will show in red, indicating the
endurance of the flight is exceeded.

Regarding a turnaround time violation, there must be a 45 minute ground time between every mission leg.
This is to accommodate the time spent for landing, takeoff, and other ground activities. Turnaround time
violations occur when a mission leg is scheduled without allowing a minimum of 45 minute ground time.
Whenever this violation occurs, the origin mission leg will display in red. A capacity violation happens
when the capacity of the aircraft is exceeded (i.e., scheduling more passengers on a flight than could be
accommodated). Whenever this occurs, the PAX column in the mission work area shows in red. A hard
time violation is associated with a request. It happens when the hard time constraint of the request leg is
violated. A soft time violation is also associated with a request. It happens when the soft time constraint in
one of the request legs is violated. It is not a severe violation, so it is shown in yellow. Other violations are
shown in red.

4.2.4 Automated Scheduling
A heuristic algorithm [5] was developed to support a complete decision support tool for automated

scheduling. DAKOTA integrates manual and automated scheduling to provide the user with the best of
both worlds. Steps involved in automated scheduling are as follows:

47

e

e

- e

1. Define the problem, as described in section 4.2.2.

2. Invoke the heuristic algorithm by selecting the DECISION_SUPPORT->RUN button from the
pulldown menu in the scheduling screen. The set partitioning algorithm tries to schedule all
unscheduled requests to missions. The output of the algorithm is a sequence of scheduled request legs
on to mission legs. The user can view them in the scheduling screen with scheduled requests and its
corresponding mission in the request and mission work area, respectively.

4.2.5 Combination of Manual and Automatic Scheduling

Both manual and automated scheduling work seamlessly. Automated and manual scheduling can be
performed in any order and any number of times on a given problem. Start the whole process with manual
scheduling, making changes to missions manually, and then continue the scheduling process using the
algorithm. Later, output from the automated scheduler can either be altered by the human scheduler or
accepted as returned from the automatic scheduler. The automated scheduler works better than a human
scheduler when there are a large number of requests and missions in a scheduling session. So by using the
automated scheduler, the user will be able to schedule the major part of the unscheduled requests. Finally, a
schedule that is acceptable to all involved parties can be generated by making minor changes and removing
any violations manually to the output from automated scheduler. Once the schedule is in final form,
database updates are made to reflect the effects of the schedule on the entire fleet schedule structure.

48

5. SOFTWARE SYSTEM DESIGN

This section presents the software system design. The system design followed a detailed requirement
analysis task. It included discovery of process, refinement, modeling, and specification of the manual
process. Typically, a GUI system requires both the developer and the customer to take an active role during
the requirement analysis and system specification stage. Whiteside et al.[4] argued that laboratory
experiments provide little design guidance. These researchers advocated a field approach in which the
specific task and context of the user are of primary importance. In our case, schedulers at the Air Force
base in Ramstein, Germany, took an active role in the analysis and design stages. This facilitated the
crafting of a software system that effectibely solves the problem of interest.

There are many sub-systems integrated together to form a robust scheduling software system. The heuristic
algorithm responsible for automated scheduling is described in [5] the database sub-system tailored for the
scheduling paradigm is explained in [6]. In this section, the system design of DAKOTA is described in
Section 5.1; the on-line context sensitive hypertext sub-system is described in Section 5.2; the UIL to C
compiler is detailed in Section 5.3; finally Section 5.4 will discusses integration strategies of all the sub-
systems to form a single state-of-art scheduling system. DAKOTA is a fully data driven software module,
we used some of the concepts and ideas in [19] [23] of how to construct and maintain schedule related and
spatial data structures.

5.1 DAKOTA Design

A widely accepted principle of application design is that a core application should not rely on a specific
user interface. The design then allows the program to run with different interfaces without changes in the
core application. With this background, a layered design was created for DAKOTA. Each layer is
connected with the other with very little coupling, enabling maintenance and implementing changes to an
individual layer with ease. There are a total of four layers in DAKOTA:

e Presentation layer
e Presentation logic
e Data logic

e Tile interface

5.1.1 Presentation Layer

The presentation layer contains a set of screens. These screens are designed using an UIMS (User
Interface Management System) called DEC-VUIT. It is a RAD (Rapid Application
Development) tool for quickly prototyping screen interface. Screens generated from the
DEC-VUIT tool are saved as text files. These text files contain screen definition in Motif
specification language, also called User Interface Language (UIL). The UIL file is later

converted to C source file, using the UIL2C convertor described in the subsequent

49

section. These sets of C source files constitute the presentation layer.

Object Hierarchy Object Attributes

»

Object Name Object Name

Object Type Attribute Count
Object Class Attribute List(]
Parent Name - Name
Creation Procedure - Value

Figure 5.1 Data stores used in presentation layer.

A screen is made up of many display objects. An object could be a widget or control in X
windows or the MSwindows environment. The object can also be a combination of more than
one widget or control. There are two main data stores, also called data structures, that
describe the characteristics of an object and its relationship with other objects. These data
stores are referred to as object hierarchy and object attributes. Object attributes data stores
describe the characteristics of a display object (e.g., width, height, color, font, position).
Object hierarchy data stores describe the interconnection or hierarchy of display objects in a
screen. Figure 5.1 depicts the relationship and various members of object hierarchy and
. attribute data stores. Functions are written to create screens after reading these data stores
at run-time. This layer is more static in nature. Any change to the display object is made in
the presentation logic layer.

5.1.2 Presentation Logic

The presentation layer responds to events. During object creation, each object is designated
to respond to certain events. An event could be generated by a user action (e.g., a mouse click
on a push-button, a drag request in a drawing canvas area etc.) or it could be generated by
the system (e.g., a screen is losing focus, or the mouse movement has been noticed etc.).
Depending on an event, this layer consults with the data logic layer, obtains required data,
and modifies the content on the screen, if necessary. This layer also acts as a bridge between
front-end screens and the back-end application logic.

5.1.3 Data Logic

The data logic layer maintains data structures used in DAKOTA. There are many data
structures, but only the one used in the scheduling screen is discussed here. Figure 5.2 shows
the data structures and interconnections between them. There are four main data structures:
mission header, mission leg, request header, and request leg. This data structure embeds the
following relationships:

* A mission header can have one or more mission leg(s).

50

e A request header can have one or more request leg(s).
e A mission leg can fly one or more request leg(s).
e A request leg can be accommodated in one or more mission leg(s).

The above relationships cover all USAFE scheduling requirements. There are functions
written to add, modify, and remove mission and request header and legs data structures.

MISSION HEADER

—1d

Aircraft Type
Tail#

Type (Pax/Maint)
—Prev Mission ID

Next Mission ID

Mission Leg

MISSION LEG

REQUEST HEADER

Id

Requesting Date
Pt. Of Contact
Remarks

Prev Reg Id
Next Reqg Id

Request Leg

'y

Id

Leg Id

Origin Base
-IDestinationBase
Departure Time
Arrival Time
Request Leg
Next Miss Leg

Prev Miss Leg

REQUEST LEG

Id

Leg Id

Origin Base
DestinationBase
Earliest Dept Time
Latest Dept Time
Earliest Arr Time
Latest Arr Time

ission Leg

Next Req Leg
Prev Reg Leg

Figure 5.2 Scheduling data structures.

These data structures are created when end-users define the problem as described in Section
4.9.2. Whenever the user initiates one of the operations mentioned in Section 4.2.3, the
presentation logic layer captures the user action, validates the user action and call an
appropriate procedure in data logic layer. This layer further validates the user action and
updates the data structures and its interconnections. The types of change that could happen
to these data structures depend on the type of operation selected by the user. For example, if
the user clicks on the APPEND LEG button, a mission leg is added after the current mission
leg in the mission leg data structure.

Apart from maintaining these data structures, this layer interacts and integrates automatic

51

scheduling and the manual scheduling process. The automatic scheduler requires data in a
different form, so the data logic layer converts the above-mentioned four data structures in a
form that can be understood and processed by the automatic scheduler. When the automatic
layer completes its processing, all data are transformed to data structures, as shown in
Figure 5.2.

5.1.4 File Interface

DAKOTA uses two types of information or data, static and dynamic. Static data remain
constant and are used only for display purposes. For example, map screen displays, country
boundaries, rivers and lakes are all represented by a sequence of points. Static data are
stored in ASCII files. Dynamic information undergoes changes. Dynamic data are stored in
DESc {6] database. DAKOTA uses DESc Application Program Interface (API) layer to
retrieve, update, and delete dynamic data; static data are handled directly using operating
system file open, read, and close system calls.

5.2 Help System

All traditional text, whether in printed form or computer files, is sequential, meaning there 1s
a single linear sequence defining the order in which the text is to be read. Hypertext is non-
sequential; there is no single order determining the sequence in which the text is to be read.
A few hypertext applications in the market address some of the hypertext functionalities but
they are limited. This paper analyzes possible features and functionalities, that a hypertext
application could have and an implementation of a sample hypertext application using the
X11R5 environment on UNIX. This section lists the advantages and disadvantages of a
hypertext system, the features supported in the on-line help sub-system developed as part of
the DAKOTA project, and finally, discusses the design of the help system.

5.2.1 Advantages and Disadvantages
What follows are some of the advantages of the hypertext help system:

e Keyword searching is one of the significant advantages of the hypertext system. It allows
one to search an on-line document, either by giving full phrases, keywords or part of the
them in finding the necessary information.

o Ease of distribution is an advantage due to the system’s cost effectiveness in distribution.

e TUp-to-date information is provided by changing the help document files in one place
instead of making supplement printed copies and distributing the latter method could be
expensive, and there is a chance of missing someone when distributing the supplements.

e Linking large libraries is an advantage of the hypertext system while leaving individual
parts unharmed.

¢ Non-linear organization of hypertext documents allows total freedom in organizing
documents. With hypertext, the writer layout the document to fit the information,
instead of forcing information into an arbitrary structure. In off-line, the document
reader has to go to a different page or book whenever encountering cross-references,
bibliographic citations, glossary terms, footnotes, etc. In hypertext, just by clicking on the

52

hot-spot, the reader can go to a different topic temporarily and return back to the original
topic.

Associative thinking is modeled in a hypertext system which more closely resembles the
structure of human idea processing by creating a network of nodes and links, allowing for
three-dimensional navigation through a body of information. Therefore, hypertext
should prove easier to learn, understand, and remember. A sample model is discussed in
[21].

More paths to information - It allows user to move in any direction they feel appropriate
in their quest for information. Also an information can be reached in many different
paths, if that is relevant to the context.

Availability of on-line documents is always available when the application system is used
as supposed to printed document that can easily get misplaced or lost.

Although, hypertext is advantageous, there also are some disadvantages, as given below:

The lost in hyperspace phenomenon: The user can easily get lost in vast hierarchies and
networks of information. Even if help document is designed properly, there is a chance of
one losing track of his initial intentions and getting lost in the volume of information

[20].

Difficult to create and maintain; It requires skill and experience in the problem domain
and know-how of end-user expertise. It creates more problem when many people are
working in creating and maintaining the help system, regarding who is to create a
particular topic and who is to update which links, etc.

Reading sequences are unpredictable: As hypertext does not impose any order in the
reading sequence, so the user can easily get confused if the on-line help document is

designed poorly.

5.2.2 Features

What follows is the list of features available in the hypertext help system:

Hot spots: Certain phrases and images in a help screen are set apart from the rest of the
information. These hotspots, or hypertext areas distinguish the on-line help system from
the printed off-line documents. They are links to a different topic or help text. When the
user clicks on these hotspots, more information is obtained on that hypertext. There are
two types of hot spots, hyper links to a new topic and the help pop-up. The first type
replaces the current help text with a new help text, the meaning all the text in the help
screen is replaced with the text for the new help topic. The second type of hotspots
provide a pop-up box with some help text, but the original help topic text remains behind

the pop-up help box.
Four navigation facilities are provided to the end-user:

1. Hyperlink traversal: Some phrases or words in the help text are marked as

53

A

PENSNECN

hotspots. Clicking on those hotspots will display new help topics related to that
hotspot.

2. Indexed traversal: All hotspots are arranged in an alphabetically sorted order.
The user can go to any of these by clicking on an item in the index list. This is
similar to the index at the end of any printed manual.

3. Lateral movement in the document: This navigation is similar to the one used to
read printed documents. Topics or sections are organized in some predefined
order. The user can go to the next topic and previous topic by pressing the NEXT
and PREVious button provided in the help screen.

4. History traversal: The help system builds a list of topics the user has visited since
the invocation of the help system. The user can now go up or down this list using
the BACK or FORWARD button provided in the help screen.

e Window resizing: When the user resizes the screen, all the help text that is currently
shown is re-formatted to fit new screen dimension.

e Scrolling: When there are more text than could fit on the screen the user can use the
scrollbar to see the hidden text.

e Display of pictures: The help system can display pictures or icons.
e Multiple fonts and color support: The help text can have multiple font-types and colors.

e Print facility: Allows the user to print the help text currently shown on the screen to the
printer.

5.2.3 Help System Design

The on-line hypertext help system has two modules, a help compiler and a run-time module.
The help compiler is used to develop help documents by the on-line help developer. The run-
time module is utilized by the end-user to review the document when needed. The next
paragraphs describe the help compiler followed by a description of the run-time module.
Figure 5.3 depicts the architecture of an on-line hypertext help system.

54

RUN-TIME
| Presentation | HELP COMPILER
Terminal Help Engine Parser

DB Layer

Figure 5.3 On-line HyperHelp systems architecture.

5.2.3.1 Help compiler

The help compiler is an utility which reads the help input file entered by the help authors,
parses the help text, and populates the help database. This help database will be accessed by
the run-time help module to display the help text when the user request for it. First of all,
the application developer or whoever is responsible for setting up the help system, should
create a help document. There is much literature on designing and writing on-line
documentation [27] [28]. Assuming the help text is in an ASCII file, the next step in the help-
authoring process is to insert help keywords in the help text file. These keywords identify
help topics and hypertext, establish links between topics, and define paragraph layouts
including font size, width, and color of text etc. in the help document. These help keywords
are derived from a popular word processor in the UNIX environment, Frame-maker. The
keywords are part of Frame-maker Markup Language (FML) used in FrameMaker. One of
the main features of FML is that it provides a few predefined keywords and lets the user
define new keywords, called user-defined keywords. Once the user defines a keyword, from
that point onwards the keyword can be used as any other system-provided keyword. All FML
keywords are enclosed within angled brackets. In help system a subset of the FML keywords
is used. Following is a listing of keywords recognized by the help compiler.

<!DefineFont font_keyword

<Family font_family_name>

55

<pts font_point_count>

<Bold | Italic | Regular>

<!DefineColor color_keyword

<Cname color_name>

<!DefinePara para_keyword
<FirstIndent point_count>
<LeftIndent point_count>

<RightIndent point_count>

<Hyper { replacement | popup } hyper_index hyper_text>

<Picture picture_type position_from_left_window_border picture_width picture_height
picture_file_name>

<Comment Help authors comment goes here>

Note:- Italic words are FML keywords and the rest are user definable.
Family - defines the font family, for example, courier, times etc.
pts - refers to the point size of the font, for example, 10pts, 15pts.
Bold | Italic | Regular - refers to the font style.

IDefineColor - used to define colors

Cname - one could use any named colors, for example, red, blue, yellow etc.

56

!DefinePara - defines a paragraph format.

FirstIndent defines indentation of the first line in a paragraph.
LeftIndent marks the left margin of a paragraph.

RightIndent identifies the right margin of a paragraph.

Hyper identifies hyper text. Hyper text are highlighted text in the screen, when clicked
using mouse device it will refresh the screen with new help topic.

replacement, replaces the current help topic with the new help topic. And the new help
topic is identified by hyper_index. It is an option which follows Hyper keyword.

popup, display text associated with hyper_index in a popup window with the current
help topic still displayed in the background of this popup window. This is similar to
replacement, it follows Hyper keyword. But only one of replacement or popup could be
mentioned for a hypertext.

Picture, is used to insert picture within an help document. It has 5 mandatory
arguments, they are picture type, for example XPM, GIF, TIFF picture
formats(currently it help system support only XPM picture format, so any picture type
other than XPM will prompt error during help compilation); left indent of the picture
from the window border; width of the picture; height of the picture and the name of the
data file containing the picture.

Comment, is provided as a means for help authors to insert their comment for later
reference.

In the para-definition segment, the user can have any user-defined keywords and
FirstIndent, LeftIndent, and RightIndent. The system assumes a default value if any of these
is omitted in paragraph definition. In the font-definition section, the help author could have
Family, pts, and either one of bold, italic, or regular keyword. The subsequent paragraph
discusses the DB layer and database schema design for hypertext help system after the steps
involved in parsing FML files are enumerated.

Compilation of the help document is a two-step process:

Parsing the ASCII Help Document File Containing FML Keywords: This step
checks for syntax errors and stores the help document in in-memory data structures.
Typically, a help document will have all paragraph layout, font, and color definition
features in the beginning of the document. These are referred to as formatting
information. The run-time module will use this formatting information later to nicely
format help texts when invoked by the end-user. The help compiler is a single-pass
compiler, so keywords should be defined before being used in the help document. The
help compiler parses as it reads a line at a time from the disk ASCII file. Data structures
in the memory are populated as paragraphs, after paragraphs are syntactically checked.
Parsing of the help document is successfully completed when the help compiler reaches
the end of the file without any syntax errors.

Populate database: In this step, the help compiler extracts data from data structures
populated in the previous step and loads it in the database, using the

57

database provided API (Application Program Interface) calls. The hypertext help system
consist of seven tables. The design and relationship of those tables is discussed in the
next paragraph.

5.2.3.2 DB Layer & Schema Design

One of the main factors in designing the DB layer is to be able to port the help system across
various commercially available databases [26]. This is done by not using the proprietary
features of any database, thereby the source code is highly inter-operable. Currently the help
systems database layer works with Informix, Sybase and DESc. The database layer is written
in C using respective DB API calls provided by each of the databases mentioned above. The
next paragraph discusses the schema design of the help system.

There are seven entities in the help system:
e Application

e Para Header

e Para_Line

e Para_Display

e Color

e Font

e Index Table

The Application entity is at the top of the hierarchy. There is one record or row for every
application’s help document. The Para_Header stores help topics of an application’s help
document. The help topic is the basic building block in a help system. A help topic consists of
one or more paragraphs with different formatting layouts. Also, there is at least one or more
help topic associated with every application, so there exists a one-to-many relationship
between the Application and Para_Header. Some database management systems do not
allow the character data field to exceed 256 characters, but a help topic could be more than
256 characters. To handle this, another entity was created called Para_Line, and a 1-to-M
relationship was established between Para_Header and Para_Line. A paragraph in a help
document exceeding the 256 character limit is split and stored in the Para_Line entity. The
number of records in Para_Line for a single paragraph in a help document is [total # of chars
in a para / 256 | . All paragraph formatting information goes into the Para_Display entity.
Records in Para_Display are referred to Para_Header for formatting details. The color and
Font entities have color and font definitions used in the help document, referred to in
Para_Display. Figure 5.4 shows all the entities content of all the entities and the relationship
between them.

58

5.2.3.3 Run-Time Module

The run-time module is used by the end-user when invoking on-line help from a GUI
application. The run-time module retrieves the help text from the database populated by the
help compiler, formats according to the formatting information stored in the help database
and displays the text to the end-user. There are three layers in the run-time module of the
hypertext help system:

e Presentation Layer
e HyperHelp Engine

e Database Layer

APPLICATION PARA LINE
__’ ——
Tag Tag COLOR
Comment Serial No
Data Tag
Data Length Name
Display Tag
Red Value
PARA HEADER LineFeed Blue Value
Green Value
Tag
LTitle
Appl Tag —
Next Para Tag J——Tag
Prev Para Font Tag Namg
FG Color Tag — Faglly
BG Color Tag] Points
INDEX TABLE First Indent Style
Left Indent
Tag Right Indent
Name Interline Gap
Para Tag

Figure 5.4 E-R diagram for help system.

The database level concerns traditional issues of information retrieval. The HyperHelp
engine is responsible for formatting text and keeping track of user actions. It is the bridge
between the database and presentation layers. The presentation layer interacts with the end-
user; it is responsible for creation and maintenance of screens necessary for displaying the
on-line help document. This layer also reformats the help text when the window is resized;
handles scrolling, waits for user action, and passes user input to the help engine. The
HelpEngine is the layer which determines the cause for user action; if necessary, it retrieves
more data from the database or supplies data from its own data structure to the presentation

59

layer for display.

5.3 UIL2C Design

The UIL2C is a utility developed for DAKOTA. It is used to recognize the user interface
language (UIL), check for syntax and semantic errors, and generate a C code that would be
later compiled and linked with other X source files to create X client object file. UIL is a
screen layout specification language, which enables one to quickly create and easily maintain
screens in the X window environment. The UIL script can be either created by the user using
any editor or can be generated from by a User Interface Management System (UIMS), such
as DEC-VUIT. Apart from all its advantages there are some disadvantages which prompted
development of UIL2C. When X client is run, it consults with the screen specification file to
get display characteristics. The process can be slow when there are more widgets/screen
objects needing to be loaded. Also, dynamic adding and removing of user events to any widget
is impossible. DAKOTA requires dynamically adding and removing user events at run-time.
To circumvent these problems, a UIL2C compiler was developed to convert UIL code to its
equivalent C source code. In the next few paragraph we will discuss about UIL2C design.

There are two main parts to every display object that is defined in a UIL file; they are
arguments and controls. The arguments part of an object describe the object’s display
attributes, such as width, height, x position, y position, etc. Each object type permits a set of
attributes. For example, XmNheight is an attribute to most objects and has an integer data
type. To specify height for a widget, the attribute name XmNheight can be used and an
integer value is specified in the argument part of the object. The controls part of an object
defines which objects are children of, or controlled by, a particular object. This part basically
defines the object hierarchy in a screen. A sample UIL script is given below:

object_name : widget_class

{
arguments
{
attribute_namel = attribute_valuel
attribute_name2 = attribute_value2
attribute_namen = attribute_valuen
}s
controls
{

widget_class object_namel

60

widget_class object_name2

widget_class object_namen
}s
}

where,

attribute_name[1,2...n] are one of those pre-defined display attribute values
attribute_values[1,2...n] corresponds to their respective attribute_name
object_name[1,2...n] are one of those user defined object names

The UIL2C, converts UIL file to C code in a three-step process:

e First, the input UIL file is read and parsed for syntax errors. This part is done using the
UNIX lexical analyzer and yacc LR(1) parser. During this process, a singly linked list of
objects is created, with each node in the list pointing to an attribute list and to a list of
child objects. This data structure is later referred to in the semantic checking and code
generation stages.

e The second step in the conversion process can be divided into two stages of semantic
checking, that are needed to make sure the of validity of the UIL files content. First,
validate if the object widget class has a valid attribute or resource name in the argument
part. For example, XmNlabelString is an attribute name; it applies to only label widget
class. If ' widget class is anything other than XmLabelGadget or XmLabelWidget, having
XmNlabelString in the argument section for an object is a semantic error. Then, check if
all the widget class defined in the control part is appropriate for this object. For example,
a single line text field widget cannot have form or bulletinboard widget, as its children.
Information about the list of all possible attributes for all widgets, and the list of all
possible children for a particular widget, is stored in two separate ASCII data files. The
UIL2C refer to these data files while verifying for semantic errors. File formats and a
sample of these data files are given in Appendix D.

e Finally, UIL2C generate C source code, if both the syntax and semantic checks completes
successfully. A sample UIL file and its equivalent C source code is given in appendix-D.

5.4 Integration of Sub-Systems

DAKOTA is comprised of many sub-systems. To be able to perform parallel development of
different parts of the system, a modular design approach [24] as in software engineering
technology was used. A modular design reduces complexity, facilitates change, and results in
easier implementation by parallel development of different parts of a system. The concept of
functional independence evolved from modularity and the concept of abstraction and
information hiding [25]. Software system was designed so that each module addressed a
specific sub-function of requirements and has a simple procedural interface when viewed
from other parts of the program structure. There are four major software

61

components developed as part of the scheduling system: manual scheduling, automatic
scheduler, hypertext help system and database system. DAKOTA invokes functionalities in
all these modules in solving scheduling problem. Each of these components is made up of
sub-components. Since this paper concentrates on the manual scheduling and help system we
will list the sub-components in these modules and describe the order of module integration
undertook to reach the final software environment. Adapted bottom-up integration strategy
as in software engineering terminology. The various sub-components or components are first
numbered and categorized based on the input, output, and processing nature of the module
as below:

1. Presentation layer Input, Output
2. Presentation logic Processing

3. Data logic Processing

4. Database & ASCII File interface Input, Output
5. Help system DB layer Input, Output
6. Help compiler Processing

7. Help system presentation layer Output

8. Database (DESc) Processing

9. Optimizer Processing

First, the input and output modules are developed and unit tested. To test the input and
output modules drivers and stubs were written which simulated the back-end processing
logic. Then, developed the processing module. Figure 5.5 depicts the order of development.
Each numbered box corresponds to the above list. Lines from two boxes meeting at a node
represents the integration order.

]2 3] eds]lel 7] L8]

Figure 5.5 Bottom-Up Integration of the sub-components.

62

To increase modularity and maintainability, the user interface and the application code
should be separated as much as possible. This is not easy, especially in graphical applications
with direct feedback, where even low-level functionality (such as dragging) requires some
processing by the application side. The application side is made up of interconnected
conceptual processes supported by data stores/structures, and the interface side is
represented by a hierarchy of interface objects (called widgets). A dialog layer in between
keeps both of the layers consistent. The dialog layer is most of the cases is thin because the
application structure is modeled directly to aid the user interface. There is also a thin
coupling layer which the user interface uses to manipulate data in the database. The
database interface layer was designed in such a way that DESc can be replaced with any
other commercially available databases, such as ORACLE, Sybase, etc.. This DB interface
layer uses DESc API function calls to query or manipulate data. Output from this layer is a
data structure that contains necessary data to either display to the user or to be used for
some computation.

Finally, the optimizer is integrated with the user interface loosely through two procedure
calls. First, SP solver is called to heuristically determine columns representing the best
assignment of request legs to missions. Then, insertion algorithm is called to recreate
schedules for selected assignments [5]. The data logic layer in DAKOTA handles transferring
the problem definition data and the schedule output between Optimizer and the user
interface. There is on-line help button available for every DAKOTA screen. When the user
presses the HELP button on the window or dialog box, the button’s callback procedure invoke
a help system entry function. Depending on from where this procedure is invoked, a
corresponding help topic is passed as a parameter to the help system, which loads that
particular help topic in a window. Scheduling application communicates with help system
using one single procedure call: XHTHelp(“<topic_name>“). This little coupling and
functional independence between the sub-systems makes DAKOTA an easily maintainable
and scaleable software system.

6. EFFECTIVENESS OF THE GUI

One of the greatest promises of a functionality-rich scheduling system is that it offers new
methods of solving problems. Without adequate system support, the chances of a user finding
an optimum solution for a given problem are small. With this in mind, DAKOTA was built
with many functionalities to help users find an optimum solution with ease. This section
discusses the valuable features in MAP, SCHEDULE and CANDIDATE SOLUTION viewing
screens and how those features help in solving scheduling problems.

The map screen displays a map of the whole world, including country borders, rivers, lakes,
bases, base labels, etc.. At any time the screen shows a day fleet activity. The user can select
a date by typing the date in a text field at the top left corner of the map screen. It will
retrieve the missions and unscheduled requests falling in that date from the database. This
information is displayed in the scrollable box on the right-hand side of the map screen. The
same information is also shown on the map, using lines to connect bases in mission and
unscheduled request legs. Missions are shown on the map as solid lines and unscheduled
requests as dashed lines. If there are lot of lines on the map, it could clutter the map and
obstruct or deviate the user's attention from the data of interest. To circumvent this problem,
the user could zoom in on an area and view only some missions or requests of interest. There
are multiple levels of zooming available. One can zoom-in on an already zoomed-in map. It is
also possible to zoom out to the previous zoom level or to the original map view. This feature
lets the user totally control which part of the data shown at anytime.

63

Another valuable feature available in the map screen is the ability to see only part of a day’s
fleet activity, thereby eliminating unwanted data while analyzing the data of interest.

64

START DATE l :
Unscheduled Requests Total: 0
B
Iz
Scheduled Missions Total: 0
rﬂ‘,‘-
17
4. =

Figure 6.1 Map screen.

There are three ways this function can be achieved:

e View a particular type of aircraft activity: Selecting VIEWS->BY_PLANE_TYPE, pop up
a dialog box with the list of aircraft in the fleet. Select aircraft that are of interest by
highlighting one or more aircraft. Once finished with the selection, accept by pressing the
OK button. This will redraw map with missions flown by selected aircraft.

e View only selected missions: Selecting VIEWS->BY_SPAR#, pop up a dialog box with the
list of missions flown on a particular day. Highlight or de-highlight by clicking on the
mission list. When finished with the selection, press the OK button to redraw the map
with the highlighted missions information.

e View either missions or unscheduled requests: View only missions or only unscheduled
requests by checking the radio-button in the CUSTOMIZE dialog box (shown in Figure
3.1). This can be reached by selecting CUSTOMIZE->MAP_DISPLAY in the map screen.
The customize dialog box also allows turning ON or OFF landmarks like country borders,
rivers, lakes, etc..

Another feature in the map screen is to be able to perform various queries on airbases. There
are six different queries that can be performed on the atlas database. Pressing
AIRPORT ATLAS in the map screen will pop up a dialog box, where one can input ORIGIN
base, DESTINATION base, AIRCRAFT TYPE, and RADIUS in miles. Some of these entries

65

need to be filled depending on a (juery type. After typing the required information, press the
OK button to execute the query, which will retrieve data from the database and update the
map screen accordingly. Following are various queries:

e Distance query: Finds the distance between any two given bases in air-miles. It displays
the selected bases on the map.

e Time query: Given two bases and an aircraft type, it finds the time taken to fly between
bases.

e Radius query: Displays all the bases that fall within a given radius of a base.
e Range query: Displays all the bases within the reach of a given aircraft from a base.

e Fuel stop query: Gives a list of bases that are in range of both the origin and destination
for a given aircraft type. This list is ordered in terms of the most efficient fuel stops first.

e Fuel path query: Displays the shortest route to travel from origin to destination for a
given aircraft type through the closest fuel stops on the flight path. The shortest path
algorithm used in finding the fuel stops provides an approximate estimate. With the huge
number of possible fuel stops within the vicinity of the flight path, an exact algorithm
would take a longer time to find the best results.

These features come in handy while scheduling in the schedule screen. The user is enabled to
find a fuel stop located along the path between origin and destination, find a stop within the
aircraft’s endurance from a base, find all bases within the given radius of a base, etc..

6.1 Candidate Solution Screen - Cellular Graph

The candidate solution viewing screen displays the schedule in three different formats. Data
necessary for display are obtained from a disk data file. This file is created in the scheduling
screen by selecting the save option from the file pulldown menu. All the missions and
requests in a scheduling session are saved in the disk file. The candidate solution screen lets
the user compare two or more solutions and choose an optimum one to permanently save to
database. There are three parts to the candidate solution viewing screen, with each portion
corresponding to one format of the schedule display. The left top portion of the candidate
solution screen shows the schedule in a map format similar to that of the map screen, with
bases connected and color-coded for every mission/request. The right top part shows all the
missions and unscheduled requests in a tabular text format. The bottom portion displays a
cellular graph of the missions, with time on the X axis and mission identifier on the Y axis.
The cellular graph shows the duration of an aircraft in-flight and ground time from the start
to end of a mission. A sample screen is given in Figure 6.2.

66

||| 2ass1an L1sT s

Mission: -1 TailNum: 30500
Date Orig Dept Dest Arrv
05/APR795 EDAR 0630 EDBT 0715
05/APR/95 EOBT 0830 EPWA 0915
05S/KPR/95 EPVA 1030 ENKR 1320
05/KPR/95 ENKR 1435 EKTS 1705
05/APR/95 EKTS 1820 EDAR 1935

Mission: -2 TailNum: 40084
Date Orig Dept Dest Arrv
05/KPR/95 EDAR 0200 LICD 0415
05/APR/95 LICD 0530 LYBT 0715
05/RPR/95 LYBT 0830 EPWA 0940
05/APR/95 EPWA 1055 EDAR 1220

Mission: ~3 TailNum: 30502
Date Orig Dept Dest Arrv
04/RPR/95 EDAR 2300 eMML 0320
05/APR/95 GMML 0450 EGTE 0845
05/APR/95 EGTE 1000 EGNB 1035
05/APR/95 EGNB 1150 EDAR 1255

Mission: —4 Tailkum: 40085
Date Orig Dept Dest Arrv

05/APR/95 EDAR 0530 EHVB 0605

05/APR/95 EHVB 1030 EDAR 1105

| (3 |29, [osw | o= | v

= =l
2

- L 7

1 EDEWIVB EDAR
-3 L A VOV e |

‘EDAR GHMML EGTE EGNB EDAR
-2 | I et |

EDAR LICD LYBT EPHA EDAR
-1 M eI L L 1
EDZBDBT EPHWA ENKR EKTS EDAR
2300 0400 0300 1400 1900
04/APR/95 é}z

Figure 6.2 Candidate solution screen.
There are a few customized options provided for changing the display attributes of a cellular
graph in the candidate solution viewing screen. These options are given in command line as

follows:

CandidateSolution -input <file_name> [-x_scale <#_pixels> -y_scale <#_pixels> -start_x
<#_pixels> -start_y <# pixels> -uptime <#_pixels>]

where,

input - name of the disk file containing the missions and request of a scheduling session
x_scale - number of pixels per hour

y_scale - number of pixels between missions

67

start_x - number of pixels from the left screen border
start_y - number of pixels from the bottom screen border

uptime - number of pixels between ground and in-flight of a mission

68

7. CONCLUSIONS

DAKOTA was developed in response to a specific scheduling need for USAFE executive
airlift. First, the problem domain was carefully analyzed as well as all the factors affecting
the scheduling paradigm. From this analysis, the software system architecture was designed.
Then, a mockup or prototype of the GUI system was built and demonstrated to the end-user
at USAFE before going into full-fledged development of the scheduling system. Initial
prototyping of the system helped identify detailed input, processing, and output
requirements. Also, a primitive DOS graphics-based scheduling system used at USAFE
assisted the developers to learn from mistakes of another software product and fine tune the
scheduling environment to meet end-user needs.

This project detailed various GUI design principles. The GUI concept that best suited for the
scheduling environment were implemented. Also, the user interface style was adapted
dictated by Open Software Foundation (OSF) for Motif applications. Therefore, anyone who is
familiar with GUI conventions will quickly become accustomed to our software system
without having to go through any training. There are many features built into the system to
enable efficient scheduling. These features are modeled to aid specific tasks in the problem
domain. While scheduling the user does not have to make a note of any information on paper,
use a calculator to perform distance or time calculations, or browse through any printed
manuals or books for information on procedures and rules of operation. All the tools
necessary for scheduling are bundled with DAKOTA. For example, the user utilizes
scheduling screen to schedule a request, in the background the user can have the map screen
opened and initiate queries for distance between any two ICAO's, determine the time taken
to travel between any two ICAQ’s, locate bases within a given radius of an airport, etc. A user
manual is stored in the help database and can be accessed using the on-line help system;
therefore, the user does not have to reach out for any printed document. All tools and
techniques required during a scheduling process are at the fingertips of the end-user. A
major achievement was made in integrating the manual and automatic scheduler. The
confidence is boosted among users by being able to schedule many requests within a short
time, using the decision support model, and still being able to edit and fine tune manually.

Even though DAKOTA is rich in functionality, there may be new features that need to be
added in the future. Since this system was developed using a third-generation language, the
size of the software system is huge, approximately 50,000 lines of code for the GUI alone.
This does not include the DESc database, Optimizer and on-line help system. Rehosting,
using a fourth-generation language, third-party tools or environment could reduce the size of
the source code and ease software maintainability.

DAKOTA generates three reports. The end-user needed to be able to dynamically define and
produce new reports from the system. This capability is needed, and is natural extension of
the software system. An approach for future enhancement would be providing the capability
of writing files that can be read by other software systems commonly used for reports and
presentations, such as spreadsheets (e.g., Excel, Lotus 1-2-3, and QuatroPro) and
presentation graphics systems (e.g., PowerPoint, Persuasion).

69

REFERENCES

[1] Mountford S.J. et al. “Drama and Personality in Interface Design” Proceeding of CHI 1989
conference on “Human Factors in Computing Systems”. ACM Press.

[2] J.G. Neal and S.C. Shapiro. “Architectures for Intelligent Interfaces Elements and
Prototypes” Proceeding of CHI 1988 conference on “Human Factors in Computing Systems”.
ACM Press.

[3] Jerry Manheimer, Rodney Burnett and Jo Ann Wallers. “A Case Study of User Interface
Management System Development and Application” in CHI 1989. ACM Press.

[4] Whiteside, J., Bennett, J., and Holtzblatt, K. Usability engineering (1988). “Our
experience and evolution”, Handbook of human computer interaction. ACM Press.

[5] Richard S. Walker(1995). “SCHEDGEN: Heuristics for Customized Airlift Resource
Allocation and Scheduling”. Department of Computer Science & Operations Research, North
Dakota State University, Fargo, ND.

[6] Prabhukumar, Ganapathy (1993). “DESc: A Database Engine for Scheduling
Applications”. Department of Computer Science & Operations Research, North Dakota State
University, Fargo, ND.

[7] Motif 1.2 Style Guide (1993). SunSoft, Sun MicroSystems, Inc.

[8] The Windows Interface: An Application Design Guide (1992). Microsoft Press, Microsoft
Corporation.

[9] Xlib,Xt and Motif Programming Manual (Vol 1, 4, 6) (1991). Oriely Publishing Co..

[10] Arnaud Le Hors & Colas Nahaboo (Nov 1991). “XPM: The X PixMap Format” User
Manual. BULL Research, Paris, France.

[11] Marcus, Aaron (1990). "Corporate Désign Principles for Graphical Human Computer
Interfaces,". Prentice Hall.

[12] Kieras, D.E. and Polson, P.G (1985). “An approach to the formal analysis of user
complexity” in International Jornal of Man-Machine Studies.

[13] Marcus, Aaron (1982). “The Computer Image: Applications of Computer Graphics”.
Addison-Wesley Publishing Co., MA. pp76-90.

[14] Marcus, Aaron (1985). “Users Must Establish Own Rules for Colors”. Computer Graphics
Today, 2(9). pp 71f.

[15] Donald A. Norman & Stephen W. Draper (1986). User Centered System Design.
Lawrence Erlbaum Associates, Publishers.

[16] Harold Thimbleby (1990). User Interface Design from ACM Press.

[17] Carroll J.M. (1984). Minimalist design for active users. pp 39-44. Proceeding Human-
Computer Interaction-INTERACT 84 (Shackel B. ed.)

70

[18] Pike R. (1988). Window systems should be transparent. Computing Systems, 1(3), 279-
96.

[19] Hanan Samet (1989). “Applications of Spatial Data Structures”. Addison-Wesley
Publishing Co. pp 225-260.

[20] Greg Kearsley (1988). “Online Help Systems - Design & Implementation”. Ablex
Publishing Corp. pp 73-83.

[21] William Horton (1990). “Designing & Writing Online Documentation Help files to
Hypertext”. John Wiley & Sons.

[22] Norman, Kent L., Linda J. Weldon, and Ben Shneiderman (1986). “Cognitive layout of
Windows and Multiple Screens for User Interfaces”. International Journal of Man-Machine

Studies.

[23] Knuth, D. (1973). The Art of Computer Programming (2nd ed.) Fundamental Algorithms
(vol. 1), Sorting and Searching (vol. 2). Addison Wesley.

[24] Roger S. Pressman (1992). “Software Engineering - A practitioner’s Approach” (3rd
edition) from McGraw-Hill, Inc.

[25] Bruce I. Blum (1992). “Software Engineering - A Holistic View”. Oxford University Press.

[26] BrockMann, R. John & William Horton (1989). “From Database to Hypertext: An
Introduction Odyssey”. Cambridge MA: The MIT Press.

[27] Bradford, Annette Norris (1984). “Conceptual Differences between the Display screen
and the Printed Page”. Technical Communication.

[28] Bradford, David (1984). “The persona in Microcomputer Documentation”. IEEE
Transactions on Professional Communication.

APPENDIX A-MASTER DATA ENTRY SCREENS

DAKOTA handles a large amount of lookup data which is used during a typical scheduling
session. There are three master or lookup entity: airport atlas, passenger and aircraft details.
We have developed GUI screens to handle these master tables, with one screen for each
lookup record management. In this Appendix, the attributes are listed in each of those
master record with a sample screen.

Airport Atlas Data Entry Screen: The airport atlas screen is used to maintain atlas data.
An atlas record consists of information given in Table A.1.

71

Table A.1 Airport Atlas Attributes

Attribute Description Valid data
ICAO A unique code for an airport | Character of length 4. It is
all-over the world. a mandatory attribute.
IATA Code Character of length 4.
CITY NAME City where the airport is | Character oflength 30.
located
AIRPORT Name of the airport Character of length 30.
NAM
LATITUDE The Latitude of the airport Real value between -90 and
+90.
LONGITUDE | The Longitude of the airport Real value between -180
and +180.
LRUNWAY Length of the runway Integer between O and
100000.
ELEVATION | Angle of elevation Integer between 0 and
100000.
STD DATE Date to convert to standard | Date as DD/MMM/YY.
time
SAVE DATE Date to convert daylight | Date as DD/MMM/YY.

72

savings time

Daylight savings time

STD HOURS Number of hours to move from | Real between -12.0 and
Standard (Zulu) time +12.0.
SAVE HOURS | Number of hours to move from | Real between -12.0 and

+12.0.

Using the atlas data entry screen the user can add new atlas records, delete an existing atlas
records, and make changes to any of the attributes (see Table A.1) in an existing record. The
changes made in the screen are first checked for validity of the data before permanently
saving to database. A sample atlas screen is given in Figure A.1.

AIRPORT ATLAS MODE : HMODIFY

1CA0 ¢

IATA ¢

CITY NAME ¢

RIRPORT NAME ¢

RAMSTEIN, GERMANY

RAMSTEIN AB

Bo3o

LATITUDE : LRUNAY ;

LONGITUDE : 7.6 ELEVATION : 2782

STD DATE : 26/SER/S3 SAVE DATE : ZB/MAR/33
STD HOURS : r1.00 SAVE HOURS r2.00

Figure A.1 Atlas Data Entry screen.

Aircraft Data Entry Screen: The aircraft screen is used to maintain aircraft data. An

aircraft record consists of information given in Table A.2. Using the aircraft screen the user
will be able to add a new aircraft type, delete an existing aircraft type and make changes to
any of the aircraft type attributes (see Table A.2). Changes made on the screen are first
checked for validity of the data before permanently saving to database. A sample aircraft
data entry screen is given in Figure A.2.

73

AIRCRAFT DATA ENTRY HODE I:I

A/C TYPE SPEED PAX ENDUR FLYHRS
- | B |
o112 260 7 5.00 igg, 60
¢-135 460 30 9.00 100. 00
c-20 440 15 7.30 100.00
c-21 440 7 4.00 100.00
T-43 420 55 5.50 100,00
UH-1Nh 90 9 2.50 100.00

Figure A.2 Aircraft data entry screen.

Table A.2 Aircraft Attributes Table

Attributes Description Valid data

A/C TYPE Name of an aircraft type. Character of length 10. A
mandatory field.

SPEED Speed of the aircraft. A positive integer.

PAX Capacity of the aircraft in terms | A positive integer.

of number of passengers.

END Endurance of the Aircraft. | A positive integer.
Continuous time in flight in

terms of hours.

74

FLYHRS Budgeted flying hours per fiscal

year.

A positive integer.

At the bottom of the screen, in Figure A.2, the two rows of buttons facilitate various
operations on the aircraft data entry screen. At any time during the data entry operation,
pressing the OK button confirms the changes to the database, while the CANCEL button

abandons the changes.

40164 £-12
40165 €-12
40166 c-12
24126 C-135
30500 C-20
30501 C-20
30502 C-20
40084 c-21
40085 c-21

Figure A.3 Tail number management screen.

There can be more than one physical aircraft to an aircraft type. Each physical aircraft is
identified by a number called the tail number. The user can add or remove a physical aireraft
from an aircraft type using the screen given in Figure A.3. To add a tail number to an
aircraft type, select the ADD button from the row of buttons at the bottom of the screen in
Figure A.3. Then type in the tail number and aircraft type in the editable text field at the top
half of the screen. To confirm the change, press the OK button. To modify or delete a tail
number from an aircraft type, first select a row from the list box and press either the
MODIFY or DELETE button. In modify mode, the user can change a tail number or associate
a tail number to a different aircraft type, or both. Once done with the change, confirm it by
pressing the OK button or CANCEL to discard. In delete mode, pressing the OK button will

75

remove that tail number from the database permanently.

Passenger Data Entry Screen: The passenger screen is used to maintain passenger
information about who has flown in the past or who is likely to fly in the future. A passenger
record consists of information given in Table A.3. A sample screen is given in Figure A.4.
Using the passenger screen the user can add, modify, or delete passenger record from the
database. There are two parts to the passenger data entry screen. One on the left-hand side
contains the list of all passengers in the database. Editable text fields on the right-hand side
are used to add or modify attributes related to a passenger record. To add a new passenger to
the database, first select the ADD button; then, enter all passenger attributes and save to the
database by pressing the OK button. To modify or delete a passenger record, select the
MODIFY or DELETE button, respectively. Then click a passenger name in the list box on the
left-hand side; this will retrieve all attributes (see Table A.3) and populate in the editable
text field on the right-hand side. In modify mode, make changes and select the OK button to
save to the database or select the CANCEL button to discard the any change. In delete mode,
select the OK button to delete the retrieved passenger record from the database
permanently.

Table A.3 Aircraft Attributes

Attributes Description Valid data

L NAME Last Name of a pax Character of length 30.

F NAME First Name and middle | Character of length 20.
Initial

TITLE Job title of the pax Character of length 10.

ID Identification. A passport | Character of length 11.
#, or SSN#

DV CODE Rank of the officer Character of length 2.

PHONE Contact Phone number Character of length 20.

76

SERVICE
CAT

Service Category: (Army,
Navy, Air Force, Civilian)

Character of length 1.

PASSENGER SYSTEM

SELECTION

- Callahan
- Callaway
R. B. -~ Callendar
- Callicutt
- Calloway
- Camerman
- Campbell
~ Campbell
- Campbell
- Campbell
- Campbell
- Campbell
- Campbell
- Campione
- Canonne

- Cantuwell
- Caporaletti
- Carabajal
- Cardile

~ Cardinal
- Cardulo

MODIFY

v CODE

PHONE

SERVICE

]314 480 7581 |

CAT I i

Figure A.4 Passenger data entry screen.

77

APPENDIX B-SCHEDULING FILE FORMAT

Since a scheduling session could be prolonged, the scheduling session needed to be able to be
saved in a disk data file temporarily in order to continue the process at some later point in
time. In this section the data file format is described and how to save and load a scheduling
session. The in-memory version of a scheduling session is saved in four different disk files.
Two files have the data as retrieved from the database, and other two files have data with
human and automatic scheduler changes. Of these two files in each category, one is an ASCII
file and the other is a binary file. The ASCII file contains the file offsets in the binary data
file for all requests and missions; it is also called the control file. The binary file contains
actual request and missions data. The save program will compute the file offsets based on the
size of the request and mission data structures, and first, create the control file. Then, the in-
memory data structure is written to the binary file in the previously computed file offsets.
The load program will just do the opposite of the save program. It first reads the control file
containing the file offsets and re-builds the in-memory data structures from the binary data
file. The first line in the control file contains the date and time of when it was created,
followed by mission count and lines starting with either MH, ML or RQ meaning Mission
Header, Mission Leg or scheduled ReQuest leg, respectively. After this, there is another
count for unscheduled request legs. Following this count there may or may not be lines
starting with the word RL, signifying the unscheduled request leg. The file format of the
control file is as follows:

<Date and Time of file creation>

<mission count>

MH <mission_id> <file_offset> <mission_leg_count>
ML <missior;_1eg_id> <file_offset> <mission_leg_count>

RQ <request_leg_id> <file_offset> <request_header_id> <request_hdr_offset>

<unscheduled request leg count>
RL <request_leg_id> <file_offset> <request_header_id> <request_hdr_offset>

Following is a sample control file:

13 MAR 95 22 13 // This file is created on March 13 ‘95 at 22:13.
4 // There are totally 4 missions.

MH -1 368 8 // Mission 1 starts at 368th byte in binary file.
ML -205721 /l First leg of mission 1.

RQ 8 728 3 2080 /l Scheduled request leg.

78

ML -21 3236 2
RQ 8 728 3 2080
RQ 9 3392 3 2080
ML -22 4744 2
RQ 8 728 3 2080
RQ 9 3392 3 2080
ML -23 4900 0
ML -25 5212 1
RQ 10 5368 3 2080
ML -26 6720 0
ML -27 6876 1

RQ 12 7032 3 2080

MH -2 8384 2 /] Mission 2

ML -28 8588 1

RQ 5 8744 2 10096b

ML -29 11252 0

MH -3 11408 2 // Mission 3
ML -30116121

RQ 611768 2 10096

ML -31 131201

RQ 7 13276 2 10096

MH -4 14628 7 // Mission 4
ML -32 14832 1

RQ 114988 1 16340

ML -33 17496 2

RQ 114988 1 16340

79

RQ 217652 1 16340

ML -34 19004 2

RQ 114988 1 16340

RQ 217652 1 16340

ML -35 19160 2

RQ 114988 1 16340

RQ 2 17652 1 16340

ML -36 19316 0

ML -37 19472 0

ML -38 19628 0

1 /I There is one unscheduled request leg.

RI. 319988 116340 // Unscheduled request leg.

Screen interface for selecting a file for saving or loading is shown in Figure B.1. The file to be
selected can either be typed in the Selection field or selected using mouse from Files list.
Once the file is selected press OK for further processing. Filter button is used to filter the list

of files shown in Files list. In the sample screen Filter field shows
“/project/phase2/usafe/shami_db/db_usafe/soln/*”, a **’ at the end indicate list all files.

80

Filter

/project/phase2/usafe/shami_db/db_usafe/soln/*

Directories Files
automatic
testl
test2
test3

‘phasel/usafe/shami_db/db_usafessalnd,
/phase2/usafe/shami_db/db_usafe/soln/, .,

Selection

/project/phase2/usafe/shami_db/db_usafe/soln/ ;

S A R

ok | Filter | Cancel Help

Figure B.1 File selection dialog box.

81

APPENDIX C-HYPERHELP SAMPLE FILES

The following is the sample hypertext input file. This file is parsed by the help compiler and
loaded in the help database. The help database is later read by the run-time help module,
whenever the user request for it. A sample help screen for this sample input file is in Figure
C.1. A document can be navigated using indexes or history, dialog boxes for indexed
navigation is in Figure C.2 and the dialog box for history-based traversal is in Figure C.3.
Clicking on an item in the list will refresh the help screen with related help topic from help
database.

<Comment hello this is a sample comment stmt>

<!DefineFont fontl

<Family lucidatypewriter>

<pts 12pt>
<Bold>

>

<!DefineFont font2
<Family courier>
<pts 14pt> »
<Bold>

>

<!DefinePara Heading
<font3>
<FirstIndent 75pt>
<LeftIndent 75pt>
<RightIndent 5pt>

>

82

<!DefinePara Sectionl
<font2>

<inter_lgap 5pt>
<FirstIndent 10pt>
<LeftIndent 20pt>
<RightIndent 30pt>

>

<!DefinePara Section2
<font1>

<inter_lgap 5pt>
<FirstIndent 40pt>
<LeftIndent 10pt>
<RightIndent 10pt>

>

<Heading intro INTRODUCTION TO USAFE SCHEDULING SYSTEM>

INTRO TO USAFE SCHEDULING SYSTEM

<Sectionl>

ISS is the Intelligent Scheduling System developed for USAFE by a research team at North
dakota state univ. The application was developed in X window environment. There are
totally 7 screens, they are <Hyper replacement mainwin MainWindow>, <Hyper replacement
schd_win Scheduling window>, <Hyper replacement req win Request entry window>,
Aircraft entry window, Atlas window, Passenger window and finally candidate solution
viewing window. In the subsequent sections we will briefly discuss about each of these
windows.

<Heading mainwin Application Main Window>

83

Application Main Window

<Sectionl>

This is the main application window. From this window one could go to all other windows in

the system using the button provided in the pulldown menu.

<Heading schd_win Scheduling Window>

Scheduling Window

<Sectionl>

Schedulers uses this window to schedule end user request to mission. These mission are

created manually.

<Heading req_win Request Entry Window>

Request Entry Window

<Sectionl> -

End-user request for flying from one place to another is entered into computer using this
request entry screen. It validates all the data entered by the user before storing in the

database.

84

FILE HELP

s

INTRO TO USAFE SCHEDULING SYSTEM
ISS is the Intelligent Scheduling System developed for
USAFE by a research team at North dakota state univ. Th
e application was developed in X window enviromment. Th
ere are totally 7 screens, they are _MainHindow, _Sched
uling window, _Request entry window, Aircraft entry win

dow, Atlas window, Passenger window and finally candida

te solution viewing window. In the subsegquent sections
we will briefly discuss abouteach of these windows.

Figure C.1 Hypertext help screen.

Hot spots (hypertext) are underlined. Clicking on a hot spot using the

mouse will replace the current help topic with the new selected help
topic.

85

Figure C.3 History Selection Dialog Box.

86

APPENDIX D-UIL To C SAMPLE FILES

Following is a sample .uil file.
module ModuleName
object

Application : XmForm

{

arguments
{
XmNx =37;
XmNy =17;
XmNwidth = 820 ;
XmNheight = 648 ;
XmNborderWidth =1 ;
¥

.controls
{
XmSeparatorGadget Separatorl ;
XmLabelGadget LabelProblem ;
}s

}s

LabelProblem: XmLabelGadget

{

arguments

{

XmNlabelString = compound_string("Problem:") ;

XmNleftAttachment = XmATTACH_FORM ;

87

XmNtopAttachmeht =XmATTACH_FORM ;

XmNleftOffset = 4 ;

XmNtopOffset =5 ;

XmNwidth =84 ;
XmNheight =17 ;
3
3
Separatorl: XmSeparatorGadget
{
arguments
{

XmNleftAttachment = XmATTACH_FORM ;
XmNtopAttachment = XmATTACH_FORM ;
XmNrightAttachment = XmATTACH_FORM ;
XmNIleftOffset =0 ;

XmNrightOffset =0 ;

XmNtopOffset =25 ;

}s

end module ;

C source file generated from above sample UIL file is:

/***

* Following will be the C file generated from the above .uil code.

88

***l

/%
* WidgetHierarchy WidgetResource data structures are pertenent to
* gcreen creation routines. It is found in resdefh .

*/

#include <Xm/Form.h>

#include <Xm/LabelG.h>

#include <Xm/SeparatoG.h>

#include <resdef.h>

WidgetHierarchy ApplicationHierarchy[] = {
{ "toplevel",
0,0,0,0,0,0
|8
{ "Application",

"toplevel",

XmCreateFormDialog,

0

I3

{ "Separatorl",

"Application”,

0,

89

0,
XT,
XtCreateManagedWidget,
&xmSeparatorGadgetClass
b
{ "LabelProblem",
"Application",
0,
0,
XT,
XtCreateManagedWidget,

&xmSeparatorGadgetClass

WidgetReesources ApplicationResources(] = {

{
2, "Application”, 5,
XmNzx, 37,
XmNy, 17,
XmNwidth, 820,
XmNheight, 648,
XmNborderWidth, 1

}s

{

2, "LabelProblem", 7,

90

)

‘i ‘".':.’:':‘d and ‘s
¢ 150-12

pubi ia raleabos
ted

vor
tio

XmNleftAttachment, XmATTACH_FORM ,

XmNtopAttachment, XmATTACH_FORM,
XmNleftOffset, 4,

XmNtopOffset, 5,
XmNwidth, 84,
XmNheight, 17

' {

ger

Trmam s
AR ST

2, "Separatorl", 6,

XmNleftAttachment, XmATTACH_FORM,

PR,
(SRR

XmNtopAttachment, XmATTACH_FORM ,

i
XmNrightAttachment, XmATTACH_FORM ,

TINFO Pro:

XmNleftOffset, 0,

5

XmNrightOffset, 0,

XmNtopOffset, 25

u.).\. ilhi

void

ApplicationCreation()
{

o

sLriby

FaN
ai

int hiecnt;

hiecnt = GetWidgetHierarchyldx(ApplicationHierarchy, "LabelProblem");

XtVaSetValues(ApplicationResource[hiecnt].widget,

91

